

AWS Administration Cookbook

Harness the full capability of AWS

Lucas Chan
Rowan Udell

 BIRMINGHAM - MUMBAI

AWS Administration Cookbook
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2017

Production reference: 1140417

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78712-763-0

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Lucas Chan
Rowan Udell

Copy Editors

Safis Editing
Madhusudan Uchil

Reviewer

Michael Kelly

Project Coordinator

Virginia Dias

Commissioning Editor

Kartikey Pandey

Proofreader

Safis Editing

Acquisition Editor

Meeta Rajani

Indexer

Tejal Daruwale Soni

Content Development Editor

Sweeny Dias

Graphics

Kirk D'Penha

Technical Editor

Khushbu Sutar

Production Coordinator

Nilesh Mohite

  

About the Authors
Lucas Chan has been working in tech since 1995 in a variety of development, systems
admin, and DevOps roles. He is currently a senior consultant and engineer at Versent and
technical director at Stax. He's been running production workloads on AWS for over 10
years. He’s also a member of the APAC AWS warriors program and holds all five of the
available AWS certifications.

I’d like to thank Rowan Udell and everyone at Packt Publishing for giving me the
opportunity to write my first book! Dr. Michael Kelly, for graciously offering his spare
time to review and critique our work. My mum, dad and sister, for putting up with my
absence and occasional crankiness for the past few months. Hannah, for simply being an
all-around amazing human. Damian Wilson, who gave me my first tech job way back in
1995: I wouldn’t be where I am today without the opportunities he gave me. Thor Essman
and James Coxon, who created the amazing company that we both work for and whose
support knows no bounds. Trang, for keeping me sane and occasionally dragging me to the
beach when I needed a break from writing. Lastly, a shout out to those who suffer from
vestibular migraines—may you walk with a steady foot, see the world with clarity and hear
with grace and harmony.

Rowan Udell has been working in development and operations for 15 years. He has held a
variety of positions, such as SRE, frontend developer, backend developer, consultant,
technical lead, and team leader. His travels have seen him work in start-ups and enterprises
in the finance, education, and web industries in Australia and Canada. He currently works
as a senior consultant with Versent, an AWS Advanced Partner in Sydney. He specializes in
serverless applications and architectures on AWS, and contributes actively in the Serverless
Framework community. He regularly blogs at h t t p ://b l o g . r o w a n u d e l l . c o m .

Firstly I'd like to thank my partner, Marie-Pier, for making this book possible for
me—having two small children does not make writing a book easy! Thanks to my family
for all their encouragement over the years. To all my colleagues and peers at Versent, thank
you for setting the bar so high and making a great company to work for. Much thanks to
our colleague Dr. Michael Kelly for reviewing the book, and the team at Packt for their
support. Finally, thanks to Lucas for the great work, and picking up my slack.

http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com
http://blog.rowanudell.com

About the Reviewer
Michael Kelly is a DevOps engineer and consultant in the financial services industry at
Versent in Sydney. In his past, Michael worked as a developer and DevOps engineer at
start-ups, developing Infrastructure as Code solutions. Michael is AWS certified and holds a
PhD in computer science. In his downtime, Michael also blogs about cloud solutions at h t t p

s ://b l o g . a s h i n y . c l o u d .

I'd like to thank Rowan and Lucas for letting me be a part of this. It has really come
together to be an excellent book—congratulations. To Anna and my family, thank you for
always being there whenever I have needed you. To everyone at Versent, I am very proud
to be in the company of such skilled craftsmen and women who put quality into everything
they do. Thank you.

https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud
https://blog.ashiny.cloud

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /178712763X .

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X
https://www.amazon.com/dp/178712763X

Table of Contents
Preface 1

Chapter 1: AWS Fundamentals 7

Introduction 7
Creating an account 7
Regions and Availability Zones 7
The AWS web console 8
CloudFormation templates 10

Infrastructure as Code 10
Visibility 11
Consistency 11
Troubleshooting 11
Scale 12
Costs 12
DevOps 13
Server configuration 14
IaC on AWS 14

CloudFormation 14
What is CloudFormation? 14
Why is CloudFormation important? 15
The layer cake 15
CloudFormation templates 16

YAML versus JSON 17
A closer look at CloudFormation templates 17

Parameters 18
Resources 19
Outputs 20
Mappings 21

Dependencies and ordering 21
Functions 23

Fn::Join 23
Fn::Sub 23

Conditionals 24
Permissions and service roles 24
Custom resources 25
Cross-stack references 25
Updating resources 26
Change sets 26

[ii]

Other things to know 27
Name collisions 27
Rollback 27
Limits 27
Circular dependencies 28
DSLs and generators 28
Credentials 29
Stack policies 29

The command-line interface tool 29
Installation 30
Upgrade 30
Configuration 30

Default profile 31
Named profiles 31
Environment variables 31
Instance roles 32

Usage 32
Commands 32
Subcommands 33
Options 33
Output 33
JSON 34
Table 35
Text 35
Querying 36

Generate CLI skeleton 36
Input 36
Output 37

Pagination 38
Autocomplete 38
Related tools 38

jq 39

Chapter 2: Managing AWS Accounts 40

Introduction 40
Setting up a master account 40

How to do it... 40
How it works... 44
There's more... 46

Multi-factor authentication 46
Using the CLI 46

See also 46
Creating a member account 46

Getting ready 46

[iii]

How to do it... 47
How it works... 47
There's more... 47

Accessing the member account 47
Service control policies 48
Root credentials 48
Deleting accounts 49

See also 49
Inviting an account 49

Getting ready 50
How to do it... 50
How it works... 60
There's more... 61

Removing accounts 61
Consolidated billing 61

See also 61
Managing your accounts 61

Getting ready 63
How to do it... 63

Getting the root ID for your organization 63
Creating an OU 63
Getting the ID of an OU 63
Adding an account to an OU 64
Removing an account from an OU 64
Deleting an OU 64

How it works... 65
There's more... 65
See also 65

Adding a service control policy 66
Getting ready 68
How to do it... 68
How it works... 69
There's more... 69
See also 70

Chapter 3: Storage and Content Delivery 71

Introduction 71
Storage 71

Elastic Block Store 72
Elastic File System 73
Simple Storage Service 73
Glacier 74

[iv]

Content delivery 74
Hosting a static website 75

How to do it... 76
Creating S3 buckets and hosting content 77
Creating a hosted zone 80
Creating DNS records 80
Uploading website content 82

How it works... 82
There's more... 82

Delegating your domain to AWS 83
Cross-origin resource sharing 83

Caching a website 84
Getting ready 84

About dynamic content 85
Configuring CloudFront distributions 85

How to do it... 88
Working with network storage 89

Getting ready 90
How to do it... 90
How it works... 94
There's more... 95

Backing up data for compliance 96
How to do it... 97
How it works... 99

Chapter 4: Using AWS Compute 100

Introduction 100
Creating a key pair 100

Getting ready 100
How to do it... 101
How it works... 101

Launching an instance 101
Getting ready 102
How to do it... 102
How it works... 102
There's more... 103
See also 103

Attaching storage 103
Getting ready 103
How to do it... 104
How it works... 104

[v]

See also 105
Securely accessing private instances 105

Getting ready 106
How to do it... 107

Configuration 111
How it works... 113
There's more... 114

Auto scaling an application server 114
Getting ready 114
How to do it... 114
How it works... 118

Scaling policies 118
Alarms 119

Creating machine images 119
Getting ready 120
How to do it... 120
How it works... 122

Template 122
Validate the template 123
Build the AMI 123

There's more... 123
Debugging 123
Orphaned resources 124
Deregistering AMIs 124
Other platforms 125

Creating security groups 125
Getting ready 125
How to do it... 126
There's more... 129

Differences from traditional firewalls 130
Creating a load balancer 130

How to do it... 130
How it works... 134
There's more... 135

HTTPS/SSL 135
Path-based routing 136

Chapter 5: Management Tools 137

Introduction 137
Auditing your AWS account 138

How to do it... 138
How it works... 140

[vi]

There's more... 141
Recommendations with Trusted Advisor 142

How to do it... 142
How it works... 143
There's more... 144

Creating e-mail alarms 145
How to do it... 145
How it works... 155
There's more... 157

Existing topics 157
Other subscriptions 158

See also 158
Publishing custom metrics in CloudWatch 158

Getting ready 158
How to do it... 159
How it works... 159
There's more... 160

Cron 160
Auto scaling 161
Backfilling 161

See also 161
Creating monitoring dashboards 161

Getting ready 162
How to do it... 162
There's more... 170

Widget types 171
See also 171

Creating a budget 171
Getting ready 172
How to do it... 172
How it works... 178

Feeding log files into CloudWatch logs 178
Getting ready 179
How to do it... 180
How it works... 186
There's more... 187

Chapter 6: Database Services 188

Introduction 188
Creating a database with automatic failover 189

Getting ready 189

[vii]

How to do it... 190
How it works... 194
There's more... 195

Creating a NAT gateway 195
Getting ready 195
How to do it... 195
How it works... 196
See also 197

Creating a database read-replica 197
Getting ready 198
How to do it... 198
How it works... 199
There's more... 199

Promoting a read-replica to master 200
Getting ready 200
How to do it... 201

Creating a one-time database backup 201
Getting ready 202
How to do it... 202

Restoring a database from a snapshot 202
Getting ready 202
How to do it... 203
There's more... 203

Migrating a database 204
Getting ready 204
How to do it... 205
How it works... 217
There's more... 219

Database engines 219
Ongoing replication 219
Multi-AZ 220

Calculating DyanmoDB performance 220
Getting ready 220
How to do it... 221
How it works... 222
There's more... 223

Burst capacity 223
Metrics 224
Eventually consistent reads 224

Chapter 7: Networking 225

[viii]

Introduction 225
Building a secure network 226

Getting ready 227
How to do it... 227
How it works... 235
There's more... 235
See also... 237

Creating a NAT gateway 237
Getting ready 237
How to do it... 238
How it works... 239
See also 239

Canary deployment via DNS 240
Getting ready 240
How to do it... 240
How it works... 242

Hosting a domain 243
Getting ready 244
How to do it... 244
How it works... 245
There's more... 245
See also... 246

Routing based on location with failover 247
Getting ready 247
How to do it... 248
How it works... 252

Normal operation (geolocation routing) 253
Region A failure 253
Region B failure 255

There's more... 256
See also... 257

Network logging and troubleshooting 257
Getting ready 257
How to do it... 257
How it works... 259
There's more... 260

Log format 260
Updates 261
Omissions 261

See also 261

[ix]

Chapter 8: Security and Identity 262

Introduction 262
Federating with your AWS account 263

Getting ready 264
How to do it... 264

Active Directory configuration 265
Auth Account policy configuration 271
Auth Account role configuration 273
Simple AD configuration 278
App Account role configuration 284

How it works... 293
There's more... 300
See also 301

Creating SSL certificates 301
How to do it... 301
How it works... 305
There's more... 306

EC2 instances 306
Importing certificates 306
CloudFormation 306

Active Directory as a service 307
Getting ready 308
How to do it... 308
How it works... 310
There's more... 311
See also 312

Creating users 312
Getting ready 313
How to do it... 313
There's more... 315
See also 316

Creating instance roles 317
How to do it... 317
How it works... 319
There's more... 321
See also 322

Cross-account user roles 322
Getting ready 322
How to do it... 323
How it works... 325

[x]

There's more... 326
AWS CLI profiles 326

See also 327
Storing secrets 327

Getting ready 328
How to do it... 328
How it works... 329
There's more... 330

Key aliases 330
Secret reader role 331
Secret writer role 331
The put-file command 332
Versioning 332

See also 332

Chapter 9: Estimating Costs 333

Introduction 333
Calculating costs 334

Getting ready 334
How to do it... 334
How it works... 340
See also 341

Estimating CloudFormation template costs 341
Getting ready 342
How to do it... 342
How it works... 344
See also 345

Purchasing reserved instances 345
Getting ready 346
How to do it... 347
How it works... 350
There's more... 351

Estimating total cost of ownership 352
Getting ready 352
How to do it... 352
How it works... 357
There's more... 358
See also 359

Index 360

Preface
The AWS platform is growing at a rapid rate, and it's being increasingly adopted across all
industries and sectors. As the saying goes, friends don't let friends build data centers. No
matter how you look at it, the model of pay-as-you-go compute, network, and storage is
here to stay. It's also becoming increasingly hard to argue against standing on the shoulders of
giants, especially when you look the rate with which features and enhancements are added
to the AWS platform compared to what you'd typically get out of other cloud providers or a
so-called private cloud.

We work with a lot of technical professionals who are highly knowledgeable in their
domain, but often completely new to the AWS platform. Alternatively, they might be
familiar with AWS but new to automation and infrastructure code practices.

We wanted to write a book for these people.

This book is intended to kick-start your AWS journey by providing recipes, patterns, and
best practices across the areas we are often asked to help with on our consulting
engagements. All the recipes and recommendations contained in this book are based on our
personal experiences and observations from our time helping customers on the AWS
platform.

CloudFormation is the AWS-native method for automating the (repeatable and reliable)
deployment of AWS resources, and we use it extensively throughout this book. The recipes
that follow will help you get well acquainted with CloudFormation, and you'll soon be on
your way to customizing and building your own templates. With so much power at your
fingertips, there's a lot of potential for finding yourself in a rabbit hole. This book aims to
steer you in the right direction and help you adopt the platform in a sustainable and
maintainable way.

What this book covers
Chapter 1, AWS Fundamentals, is an overview of Infrastructure as Code, CloudFormation,
and the AWS CLI tools.

Chapter 2, Managing AWS Accounts, covers everything you need to know to manage your
accounts and get started with AWS organizations.

Chapter 3, Storage and Content Delivery, shows you how to back up your data and serve file
objects to your users.

Preface

[2]

Chapter 4, Using AWS Compute, dives deep into how to run VMs (EC2 instances) on AWS,
how to auto scale them, and how to create and manage load balancers.

Chapter 5, Management Tools, provides an overview of how to audit your account and
monitor your infrastructure.

Chapter 6, Database Services, shows you how to create, manage, and scale databases on the
AWS platform.

Chapter 7, Networking, introduces private networks, routing, and DNS.

Chapter 8, Security and Identity, offers advice and practical solutions for managing identities
and role-based access.

Chapter 9, Estimating Costs, provides an overview of how to estimate your spend on the
AWS platform as well as how to reduce your costs by purchasing reserved instance
capacity.

What you need for this book
The recipes in this book show you how to deploy a wide variety of resources on AWS, so
you'll need at least one AWS account with full administrative access. You'll also need a text
editor to edit YAML/JSON CloudFormation templates, and the AWS CLI tools, which are
supported on common operating systems (macOS/Linux/Windows).

Who this book is for
This book is for anyone with a technical background who is interested in using AWS, either
for moving existing workloads or deploying completely new applications. Those who want
to learn CloudFormation will also find this book useful.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Preface

[3]

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You
should now have an active session under PowerUserRole in the application account."

A block of code is set as follows:

Parameters:
 EC2KeyName:
 Type: String
 Description: EC2 Key Pair to launch with

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Parameters:
 EC2KeyName:
 Type: String
 Description: EC2 Key Pair to launch with

Any command-line input or output is written as follows:

aws ec2 describe-availability-zones --output json

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button
moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.
To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

https://www.packtpub.com/books/info/packt/authors

Preface

[5]

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.
You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
 Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /A W S - A d m i n i s t r a t i o n - C o o k b o o k . We also have other code bundles from our rich
catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check
them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/AWS-Administration-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a ,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
AWS Fundamentals

In this chapter, we will cover:

Infrastructure as Code
AWS CloudFormation
The AWS command-line tool

Introduction
Amazon Web Services (AWS) is a public cloud provider. It provides infrastructure and
platform services at a pay-per-use rate. This means you get on-demand access to resources
that you used to have to buy outright. You can get access to enterprise-grade services while
only paying for what you need, usually down to the hour.

AWS prides itself on providing the primitives to developers so that they can build and scale
the solutions that they require.

Creating an account
In order to follow along with the recipes, you will need an AWS account. Create an account
at https://aws.amazon.com/ by clicking on the Sign Up button and entering your details.

Even though we will be taking advantage of the free tier wherever
possible, you will need a valid credit card to complete the signup process.
Go to https://aws.amazon.com/free/ for more information. Note that the
free tier only applies for the first year of your account's lifetime.

https://aws.amazon.com/
https://aws.amazon.com/free/

AWS Fundamentals

[8]

Regions and Availability Zones
A fundamental concept of AWS is that its services and the solutions built on top of them are
architected for failure. This means that a failure of the underlying resources is a scenario
actively planned for, rather than avoided until it cannot be ignored.

Due to this, all the services and resources available are divided up in to geographically
diverse Regions. Using specific regions means you can provide services to your users that
are optimized for speed and performance.

Within a region, there are always multiple Availability Zones (a.k.a. AZ). Each AZ
represents a geographically distinct—but still close—physical data center. AZs have their
own facilities and power source, so an event that might take a single AZ offline is unlikely
to affect the other AZs in the region.

The smaller regions have at least two AZs, and the largest has five.

At the time of writing, the following regions are active:

Code Name Availability Zones

us-east-1 N. Virginia 5

us-east-2 Ohio 3

us-west-1 N. California 3

us-west-2 Oregon 3

ca-central-1 Canada 2

eu-west-1 Ireland 3

eu-west-2 London 2

eu-central-1 Frankfurt 2

ap-northeast-1 Tokyo 3

ap-northeast-2 Seoul 2

ap-southeast-1 Singapore 2

ap-southeast-2 Sydney 3

ap-south-1 Mumbai 2

sa-east-1 Sao Paulo 3

AWS Fundamentals

[9]

The AWS web console
The web-based console is the first thing you will see after creating your AWS account, and
you will often refer to it when viewing and confirming your configuration.

The AWS web console

The console provides an overview of all the services available as well as associated billing
and cost information. Each service has its own section, and the information displayed
depends on the service being viewed. As new features and services are released, the console
will change and improve. Don't be surprised if you log in and things have changed from
one day to the next.

Keep in mind that the console always shows your resources by region. If
you cannot see a resource that you created, make sure you have the right
region selected.

AWS Fundamentals

[10]

Choose the region closest to your physical location for the fastest response times. Note that
not all regions have the same services available. The larger, older regions generally have the
most services available. Some of the newer or smaller regions (that might be closest to you)
might not have all services enabled yet. While services are continually being released to
regions, you may have to use another region if you simply must use a newer service.

The us-east-1 (a.k.a. North Virginia) region is special given its status as
the first region. All services are available there, and new services are
always released there.

As you get more advanced with your use of AWS, you will spend less time in the console
and more time controlling your services programmatically via the AWS CLI tool and
CloudFormation, which we will go into in more detail in the next few topics.

CloudFormation templates
Where possible, we have based the recipes around a CloudFormation template.
CloudFormation is the Infrastructure as Code service from AWS.

Where CloudFormation was not applicable, we have used the AWS CLI to
make the process repeatable and automatable.

Since the recipes are based on CloudFormation templates, you can easily combine different
templates to achieve your desired outcomes. By editing the templates or joining them, you
can create more useful and customized configurations with minimal effort.

Infrastructure as Code
Infrastructure as Code (IaC) is the practice of managing infrastructure though code
definitions.

On an Infrastructure-as-a-Service (IaaS) platform such as AWS, IaC is needed to get the
most utility and value. IaC differs primarily from traditional interactive methods of
managing infrastructure because it is machine processable. This enables a number of
benefits:

Improved visibility of resources

AWS Fundamentals

[11]

Higher levels of consistency between deployments and environments
Easier troubleshooting of issues
The ability to scale more with less effort
Better control over costs

On a less tangible level, all of these factors contribute to other improvements for your
developers: you can now leverage tried-and-tested software development practices for your
infrastructure and enable DevOps practices in your teams.

Visibility
As your infrastructure is represented in machine-readable files, you can treat it like you do
your application code. You can take the best-practice approaches to software development
and apply them to your infrastructure. This means you can store it in version control (for
example, Git and SVN) just like you do your code, along with the benefits that it brings:

All changes to infrastructure are recorded in commit history
You can review changes before accepting/merging them
You can easily compare different configurations
You can pick and use specific point-in-time configurations

Consistency
Consistent configuration across your environments (for example, dev, test, and prod) means
that you can more confidently deploy your infrastructure. When you know what
configuration is in use, you can easily test changes in other environments due to a common
baseline.

IaC is not the same as just writing scripts for your infrastructure. Most tools and services will
leverage higher-order languages and DSLs to allow you to focus on your higher-level
requirements. It enables you to use advanced software development techniques, such as
static analysis, automated testing, and optimization.

Troubleshooting
IaC makes replicating and troubleshooting issues easier: since you can duplicate your
environments, you can accurately reproduce your production environment for testing
purposes.

AWS Fundamentals

[12]

In the past, test environments rarely had exactly the same infrastructure due to the
prohibitive cost of hardware. Now that it can be created and destroyed on demand, you are
able to duplicate your environments only when they are needed. You only need to pay for
the time that they are running for, usually down to the hour. Once you have finished
testing, simply turn your environments off and stop paying for them.

Even better than troubleshooting is fixing issues before they cause errors. As you refine
your IaC in multiple environments, you will gain confidence that is difficult to obtain
without it. By the time you deploy your infrastructure in to production, you have done it
multiple times already.

Scale
Configuring infrastructure by hand can be a tedious and error-prone process. By
automating it, you remove the potential variability of a manual implementation: computers
are good at boring, repetitive tasks, so use them for it!

Once automated, the labor cost of provisioning more resources is effectively zero—you
have already done the work. Whether you need to spin up one server or a thousand, it
requires no additional work.

From a practical perspective, resources in AWS are effectively unconstrained. If you are
willing to pay for it, AWS will let you use it.

Costs
AWS have a vested (commercial) interest in making it as easy as possible for you to
provision infrastructure. The benefit to you as the customer is that you can create and
destroy these resources on demand.

Obviously, destroying infrastructure on-demand in a traditional, physical hardware
environment is simply not possible. You would be hard-pressed to find a data center that
will allow you to stop paying for servers and space simply because you are not currently
using them.

Another use case where on-demand infrastructure can make large cost savings is your
development environment. It only makes sense to have a development environment while
you have developers to use it. When your developers go home at the end of the day, you
can switch off your development environments so that you no longer pay for them. Before
your developers come in in the morning, simply schedule their environments to be created.

AWS Fundamentals

[13]

DevOps
DevOps and IaC go hand in hand. The practice of storing your infrastructure (traditionally
the concern of Operations) as code (traditionally the concern of Development) encourages a
sharing of responsibilities that facilitates collaboration.

Image courtesy: Wikipedia

By automating the PACKAGE, RELEASE, and CONFIGURE activities in the software
development life cycle (as pictured), you increase the speed of your releases while also
increasing confidence.

Cloud-based IaC encourages architecture for failure: as your resources are virtualized, you
must plan for the chance of physical (host) hardware failure, however unlikely.

Being able to recreate your entire environment in minutes is the ultimate recovery solution.

Unlike physical hardware, you can easily simulate and test failure in your software
architecture by deleting key components—they are all virtual anyway!

AWS Fundamentals

[14]

Server configuration
Server-side examples of IaC are configuration-management tools such as Ansible, Chef, and
Puppet.

While important, these configuration-management tools are not specific to AWS, so we will
not be covering them in detail here. There are a myriad of books and courses devoted to this
topic if you need to know more.

IaC on AWS
CloudFormation is the IaC service from AWS.

Templates written in a specific format and language define the AWS resources that should
be provisioned. CloudFormation is declarative and cannot only provision resources, but
also update them.

We will go into CloudFormation in greater detail in the next topic.

CloudFormation
We'll use CloudFormation extensively throughout this book, so it's important that you have
an understanding of what it is and how it fits in to the AWS ecosystem. There should easily
be enough information here to get you started, but where necessary, we'll refer you to AWS'
own documentation.

What is CloudFormation?
The CloudFormation service allows you to provision and manage a collection of AWS
resources in an automated and repeatable fashion. In AWS terminology, these collections
are referred to as stacks. Note however that a stack can be as large or as small as you like. It
might consist of a single S3 bucket, or it might contain everything needed to host your
three-tier web app.

In this chapter, we'll show you how to define the resources to be included in your
CloudFormation stack. We'll talk a bit more about the composition of these stacks and why
and when it's preferable to divvy up resources between a number of stacks. Finally, we'll
share a few of the tips and tricks we've learned over years of building countless
CloudFormation stacks.

AWS Fundamentals

[15]

Be warned!
Pretty much everyone incurs at least one or two flesh wounds along their
journey with CloudFormation. It is all very much worth it, though.

Why is CloudFormation important?
By now, the benefits of automation should be starting to become apparent to you. But don't
fall in to the trap of thinking CloudFormation will be useful only for large collections of
resources. Even performing the simplest task of, say, creating an S3 bucket can get very
repetitive if you need to do it in every region.

We work with a lot of customers who have very tight controls and governance around their
infrastructure, and especially in the network layer (think VPCs, NACLs, and security
groups). Being able to express one's cloud footprint in YAML (or JSON), store it in a source
code repository, and funnel it through a high-visibility pipeline gives these customers
confidence that their infrastructure changes are peer-reviewed and will work as expected in
production. Discipline and commitment to IaC SDLC practices are of course a big factor in
this, but CloudFormation helps bring us out of the era of following 20-page run-sheets for
manual changes, navigating untracked or unexplained configuration drift, and unexpected
downtime caused by fat fingers.

The layer cake
Now is a good time to start thinking about your AWS deployments in terms of layers. Your
layers will sit atop one another, and you will have well-defined relationships between them.

Here's a bottom-up example of how your layer cake might look:

VPC with CloudTrail
Subnets, routes, and NACLs
NAT gateways, VPN or bastion hosts, and associated security groups
App stack 1: security groups, S3 buckets
App stack 1: cross-zone RDS and read replica
App stack 1: app and web server auto scaling groups and ELBs
App stack 1: CloudFront and WAF config

AWS Fundamentals

[16]

In this example, you may have many occurrences of the app stack layers inside your VPC,
assuming you have enough IP addresses in your subnets! This is often the case with VPCs
living inside development environments. So immediately, you have the benefit of multi-
tenancy capability with application isolation.

One advantage of this approach is that while you are developing your CloudFormation
template, if you mess up the configuration of your app server, you don't have to wind back
all the work CFN did on your behalf. You can just turf that particular layer (and the layers
that depend on it) and restart from there. This is not the case if you have everything
contained in a single template.

We commonly work with customers for whom ownership and management of each layer in
the cake reflects the structure of the technology divisions within a company. The traditional
infrastructure, network, and cyber security folk are often really interested in creating a safe
place for digital teams to deploy their apps, so they like to heavily govern the foundational
layers of the cake. Conway's Law, coined by Melvin Conway, starts to come in to play here:

"Any organization that designs a system will inevitably produce a design whose structure
is a copy of the organization's communication structure."

Finally, even if you are a single-person infrastructure coder working in a small team, you
will benefit from this approach. For example, you'll find that it dramatically reduces your
exposure to things such as AWS limits, timeouts, and circular dependencies.

CloudFormation templates
This is where we start to get our hands dirty. CloudFormation template files are the
codified representation of your stack, expressed in either YAML or JSON. When you wish
to create a CloudFormation stack, you push this template file to CloudFormation, through
its API, web console, command line tools, or some other method (such as the SDK).

Templates can be replayed over and over again by CloudFormation, creating many
instances of your stack.

AWS Fundamentals

[17]

YAML versus JSON
Up until recently, JSON was your only option. We'll actually encourage you to adopt
YAML, and we'll be using it for all of the examples shown in this book. Some of the reasons
are as follows:

It's just nicer to look at. It's less syntax heavy, and should you choose to go down
the path of generating your CloudFormation templates, pretty much every
language has a YAML library of some kind.
The size of your templates will be much smaller. This is more practical from a
developer's point of view, but it also means you're less likely to run into the
CloudFormation size limit on template files (50 KB).
The string-substitution features are easier to use and interpret.
Your EC2 UserData (the script that runs when your EC2 instance boots) will be
much easier to implement and maintain.

A closer look at CloudFormation templates
CloudFormation templates consist of a number of parts, but these are the four we're going
to concentrate on:

Parameters
Resources
Outputs
Mappings

Here's a short YAML example:

AWSTemplateFormatVersion: '2010-09-09'
Parameters:
 EC2KeyName:
 Type: String
 Description: EC2 Key Pair to launch with
Mappings:
 RegionMap:
 us-east-1:
 AMIID: ami-9be6f38c
 ap-southeast-2:
 AMIID: ami-28cff44b
Resources:
 ExampleEC2Instance:
 Type: AWS::EC2::Instance
 Properties:

AWS Fundamentals

[18]

 InstanceType: t2.nano
 UserData:
 Fn::Base64:
 Fn::Sub': |
 #!/bin/bash -ex
 /opt/aws/bin/cfn-signal '${ExampleWaitHandle}'
 ImageId:
 Fn::FindInMap: [RegionMap, Ref: 'AWS::Region', AMIID]
 KeyName:
 Ref: EC2KeyName
 ExampleWaitHandle:
 Type: AWS::CloudFormation::WaitConditionHandle
 Properties:
 ExampleWaitCondition:
 Type: AWS::CloudFormation::WaitCondition
 DependsOn: ExampleEC2Instance
 Properties:
 Handle:
 Ref: ExampleWaitHandle
 Timeout: 600
Outputs:
 ExampleOutput:
 Value:
 Fn::GetAtt: ExampleWaitCondition.Data
 Description: The data signaled with the WaitCondition

Parameters
CloudFormation parameters are the input values you define when creating or updating
your stack, similar to how you provide parameters to any command-line tools you might
use. They allow you to customize your stack without making changes to your template.
Common examples of what parameters might be used for are as follows:

EC2 AMI ID: You may wish to redeploy your stack with a new AMI that has the
latest security patches installed.
Subnet IDs: You could have a list of subnets that an auto scaling group should
deploy servers in. These subnet IDs will be different between your dev, test, and
production environments.
Endpoint targets and credentials: These include things such as API hostnames,
usernames, and passwords.

AWS Fundamentals

[19]

You'll find that there are a number of parameter types. In brief, they are:

String
Number
List
CommaDelimitedList

In addition to these, AWS provides some AWS-specific parameter types. These can be
particularly handy when you are executing your template via the CloudFormation web
console. For example, a parameter type of AWS::EC2::AvailabilityZone::Name will
cause the web console to display a drop-down list of valid Availability Zones for this
parameter. In the ap-southeast-2 region, the list would look like this:

ap-southeast-2a

ap-southeast-2b

ap-southeast-2c

The list of AWS-specific parameter types is steadily growing and is large enough that we
can't list them here. We'll use many of them throughout this book, however, and they can
easily be found in the AWS CloudFormation documentation.

When creating or updating a stack, you will need to provide values for all the parameters
you've defined in your template. Where it makes sense, you can define default values for a
parameter. For example, you might have a parameter called debug that tells your
application to run in debug mode. You typically don't want this mode enabled by default,
so you can set the default value for this parameter to false, disabled, or something else
your application understands. Of course, this value can be overridden when creating or
updating your stack.

You can and should provide a short, meaningful description for each parameter. These are
displayed in the web console next to each parameter field. When used properly, they
provide hints and context to whoever is trying to run your CloudFormation template.

At this point, we need to introduce the inbuilt Ref function. When you need to reference a
parameter value, you use this function to do so:

KeyName:
 Ref: EC2KeyName

While Ref isn't the only inbuilt function you'll need to know, it's almost certainly going to
be the one you'll use the most. We'll talk more about inbuilt functions later in this chapter.

AWS Fundamentals

[20]

Resources
Resources are your actual pieces of AWS infrastructure. These are your EC2 instances, S3
buckets, ELBs, and so on. Almost any resource type you can create by pointing and clicking
in the AWS web console can also be created using CloudFormation.

It's not practical to list all the AWS resource types in this chapter, although
you will get familiar with the most common types as you work your way
through the recipes in this book. AWS keeps a definitive list of resources
types here
h t t p ://d o c s . a w s . a m a z o n . c o m /A W S C l o u d F o r m a t i o n /l a t e s t /U s e r G u i d e

/a w s - t e m p l a t e - r e s o u r c e - t y p e - r e f . h t m l .

There are a few important things to keep in mind about CloudFormation resources:

New or bleeding-edge AWS resources are often not immediately supported.
CloudFormation support typically lags a few weeks (sometimes months) behind
the release of new AWS features. This used to be quite frustrating for anyone to
whom infrastructure automation is key. Fast-forward to today, and this situation
is somewhat mitigated by the ability to use custom resources. These are discussed
further on in this chapter.
Resources have a default return value. You can use Ref to fetch these return
values for use elsewhere in your template. For example, the AWS::EC2::VPC
resource type has a default return value that is the ID of the VPC. They look
something like this: vpc-11aa111a.
Resources often contain additional return values. These additional values are
fetched using the inbuilt Fn::GetAtt function. Continuing from the previous
example, the AWS::EC2::VPC resource type also returns the following:

CidrBlock

DefaultNetworkAcl

DefaultSecurityGroup

Ipv6CidrBlocks

Outputs
Just like AWS resources, CloudFormation stacks can also have return values, called
outputs. These values are entirely user defined. If you don't specify any outputs, then
nothing is returned when your stack is completed.

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html

AWS Fundamentals

[21]

Outputs can come in handy when you are using a CI/CD tool to create your
CloudFormation stacks. For example, you might like to output the public hostname of an
ELB so your CI/CD tool can turn it into a clickable link within the job output.

You'll also use them when your are linking together pieces of your layer cake. You may
want to reference an S3 bucket or security group created in another stack. This is much
easier to do with the new cross-stack references feature, which we'll discuss later in this
chapter. You can expect to see the Ref and Fn::GetAtt functions a lot in the output section
of any CloudFormation template.

Mappings
The mappings section is used to define a set of key/value pairs. If you require any kind of
AWS region portability, perhaps for DR or availability purposes or simply to get your
application closer to your end user, you'll almost certainly need to specify some mappings
in your template. This is particularly necessary if you are referencing anything in your
template that is region specific.

The canonical example would be to specify a map of EC2 AMI IDs in your template. This is
because AMIs are a region-specific resource, so a reference to a valid Amazon Machine
Image (AMI) ID in one region will be invalid in another.

Mappings look like this:

Mappings:
 RegionMap:
 us-east-1:
 AMIID: ami-9be6f38c
 ap-southeast-2:
 AMIID: ami-28cff44b

Dependencies and ordering
When executing your template, CloudFormation will automatically work out which
resources depend on each other and order their creation accordingly. Additionally, resource
creation is parallelized as much as possible so that your stack execution finishes in the
timeliest manner possible. Things occasionally become unstuck, however.

AWS Fundamentals

[22]

Let's take an example where an app server depends on a DB server. In order to connect to
the database, the app server needs to know its IP address or hostname. This situation would
actually require you to create the DB server first so that you can use Ref to fetch its IP and
provide it to your app server. CloudFormation has no way of knowing about the coupling
between these two resources, so it will go ahead and create them in any order it pleases (or
in parallel if possible).

To fix this situation, we use the DependsOn attribute to tell CloudFormation that our app
server depends on our DB server. In fact, DependsOn can actually take a list of strings if a
resource happens to depend on multiple resources before it can be created. So if our app
server were to also depend on, say, a Memcached server, then we use DependsOn to declare
both dependencies.

If necessary, you can take this further. Let's say that after your DB server boots, it will
automatically start the database, set up a schema, and import a large amount of data. It may
be necessary to wait for this process to complete before we create an app server that
attempts to connect to a DB expecting a complete schema and data set. In this scenario, we
want a way to signal to CloudFormation that the DB server has completed its initialization
so it can go ahead and create resources that depend on it. This is where WaitCondition
and WaitConditionHandle come in.

Firstly, you create an AWS::CloudFormation::WaitConditionHandle type, which you
can later reference via Ref.

Next, you create an AWS::CloudFormation::WaitCondition type. In our case, we want
the wait period to start as soon as the DB server is created, so we specify that this
WaitCondition resource DependsOn our DB server.

After the DB server has finished importing data and is ready to accept connections, it calls
the callback URL provided by the WaitConditionHandle resource to signal to
CloudFormation that it can stop waiting and start executing the rest of the CloudFormation
stack. The URL is supplied to the DB server via UserData, again using Ref. Typically,
curl, wget or some equivalent is used to call the URL.

A WaitCondition resource can have a Timeout period too. This is a value specified in
seconds. In our example, we might supply a value of 900 because we know that it should
never take more than 15 minutes to boot our DB and import the data.

Here's an example of what DependsOn, WaitConditionHandle, and WaitCondition look
like combined:

ExampleWaitHandle:
 Type: AWS::CloudFormation::WaitConditionHandle

AWS Fundamentals

[23]

 Properties:
ExampleWaitCondition:
 Type: AWS::CloudFormation::WaitCondition
 DependsOn: ExampleEC2Instance
 Properties:
 Handle:
 Ref: ExampleWaitHandle
 Timeout: 600

Functions
CloudFormation provides some inbuilt functions to make composing your templates a lot
easier. We've already looked at Ref and Fn::GetAtt. Let's look at some others you are
likely to encounter.

Fn::Join
Use Fn::Join to concatenate a list of strings using a specified delimiter, like this, for
example:

"Fn::Join": [".", [1, 2, 3, 4]]

This would yield the following value:

"1.2.3.4"

Fn::Sub
Use Fn::Sub to perform string substitution. Consider this:

DSN: "Fn::Sub"
 - mysql://${db_user}:${db_pass}@${db_host}:3306/wordpress
 - { db_user: lchan, db_pass: ch33s3, db_host: localhost }

This would yield the following value:

mysql://lchan:ch33s3@localhost:3306/wordpress

When you combine these functions with Ref and Fn::GetAtt, you can start doing some
really powerful stuff, as we'll be seeing in the recipes throughout this book.

AWS Fundamentals

[24]

Other available inbuilt functions include:

Fn::Base64

Fn::FindInMap

Fn::GetAZs

Fn::ImportValue

Fn::Select

Documentation on all of these functions is available here h t t p ://d o c s . a w
s . a m a z o n . c o m /A W S C l o u d F o r m a t i o n /l a t e s t /U s e r G u i d e /i n t r i n s i c - f u n c

t i o n - r e f e r e n c e . h t m l .

Conditionals
It's reasonably common to provision a similar but distinct set of resources based on which
environment your stack is running in. In your development environment, for example, you
may not wish to create an entire fleet of database servers (HA master and read slaves),
instead opting for just a single database server. You can achieve this by using conditionals:

Fn::And

Fn::Equals

Fn::If

Fn::Not

Fn::Or

Permissions and service roles
One important thing to remember about CloudFormation is that it's more or less just
making API calls on your behalf. This means that CloudFormation will assume the very
same permissions or role you use to execute your template. If you don't have permission to
create a new hosted zone in Route 53, for example, any template you try to run that contains
a new Route 53-hosted zone will fail.

On the flip side, this has created a somewhat tricky situation where anyone developing
CloudFormation typically has a very elevated level of privileges, and these privileges are
somewhat unnecessarily granted to CloudFormation each time a template is executed.

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html

AWS Fundamentals

[25]

If my CloudFormation template contains only one resource, which is a Route 53-hosted
zone, it doesn't make sense for that template to be executed with full admin privileges to
my AWS account. It makes much more sense to give CloudFormation a very slim set of
permissions to execute the template with, thus limiting the blast radius if a bad template
were to be executed (that is, a bad copy-and-paste operation resulting in deleted resources).

Thankfully, service roles have recently been introduced, and you can now define an IAM
role and tell CloudFormation to use this role when your stack is being executed, giving you
a much safer space to play in.

Custom resources
As discussed previously in this chapter, it's common for there to be a lengthy wait between
the release of a new AWS feature and your ability to use that feature in CloudFormation.

Before custom resources, this led AWS developers down the path of doing over 95 percent
of their automation in CloudFormation and then running some CLI commands to fill in the
gaps. It was often difficult to tell exactly which resources belonged to which stack, and
knowing exactly when your stack had finished execution became a guessing game.

Fast forward to today, and the emerging pattern is to use a custom resource to delegate to a
AWS Lambda function. Lambda can fill in the gaps by making API calls on your behalf, and
it becomes much easier to track the heritage and completion of these resources.

With any luck, you won't need to use this feature for a while. In the
meantime, the AWS custom resource documentation is quite
comprehensive. If you are trying to use CloudFormation to create a
resource that you can't find in the AWS docs, then it's likely that it's not
supported in CloudFormation yet and using custom resources is your
answer. For more information, refer to
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/te

mplate-custom-resources.html.

Cross-stack references
When using the layered cake approach, it's very common to want to use outputs from one
stack as inputs in another stack. For example, you may create a VPC in one stack and
require its VPC ID when creating resources in another.

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources.html

AWS Fundamentals

[26]

For a long time, one needed to provide some glue around stack creation to pass output
between stacks. AWS recently introduced cross-stack references, which provide a more
native way of doing this.

You can now export one or more outputs from your stack. This makes those outputs
available to other stacks. Note that the name of this value needs to be unique, so it's
probably a good idea to include the CloudFormation stack name in the name you're
exporting to achieve this.

Once a value is exported, it becomes available to be imported in another stack using the
Fn::ImportValue function—very handy!

Make sure, however, that during the time an exported value is being
referenced, you are not able to delete or modify it. Additionally, you won't
be able to delete the stack containing the exported value. Once something
is referencing an exported value, it's there to stay until there are no stacks
referencing it at all.

Updating resources
One of the principles of IaC is that all changes should be represented as code for review and
testing. This is especially important where CloudFormation is concerned.

After creating a stack for you, the CloudFormation service is effectively hands off. If you
make a change to any of the resources created by CloudFormation (in the web console,
command line, or by some other method), you're effectively causing configuration drift.
CloudFormation no longer knows the exact state of the resources in your stack.

The correct approach is to make these changes in your CloudFormation template and
perform an update operation on your stack. This ensures that CloudFormation always
knows the state of your stack and allows you to maintain confidence that your
infrastructure code is a complete and accurate representation of your running
environments.

Change sets
When performing a stack update, it can be unclear exactly what changes are going to be
made to your stack. Depending on which resource you are changing, you may find that it
will need to be deleted and recreated in order to implement your change. This, of course, is
completely undesired behavior if the resource in question contains data you'd like to keep.
Keep in mind that RDS databases can be a particular pain point.

AWS Fundamentals

[27]

To mitigate this situation, CloudFormation allows you to create and review a change set
prior to executing the update. The change set shows you which operations CloudFormation
intends to perform on your resources. If the change set looks good, you can choose to
proceed. If you don't like what you see, you can delete the change set and choose another
course of action—perhaps choosing to create and switch to an entirely new stack to avoid a
service outage.

Other things to know
There are a few other things you should keep in the back of your mind as you start to build
out your own CloudFormation stacks. Let's take a look.

Name collisions
Often, if you omit the name attribute from a resource, CloudFormation will generate a
name for you. This can result in weird-looking resource names, but it will increase the
replayability of your template. Using AWS::S3::Bucket as an example, if you specify the
BucketName parameter but don't ensure its uniqueness, CloudFormation will fail to execute
your template the second time around because the bucket will already exist. Omitting
BucketName fixes this. Alternatively, you may opt to generate your own unique name each
time the template is run. There's probably no right or wrong approach here, so just do what
works for you.

Rollback
When creating a CloudFormation stack, you are given the option of disabling rollback.
Before you go ahead and set this to true, keep in mind that this setting persists beyond
stack creation. We've ended up in precarious situations where updating an existing stack
has failed (for some reason) but rollback has been disabled. This is a fun situation for no
one.

Limits
The limits most likely to concern you are as follows:

The maximum size allowed for your CloudFormation template is 50 KB. This is
quite generous, and if you hit this limit, you almost certainly need to think about
breaking up your template into a series of smaller ones. If you absolutely need to
exceed the 50 KB limit, then the most common approach is to first upload your
template to S3 and then provide an S3 URL to CloudFormation to execute.

AWS Fundamentals

[28]

The maximum number of parameters you can specify is 60. If you need more
than this then again, consider whether or not you need to add more layers to
your cake. Otherwise, lists or mappings might get you out of trouble here.
Outputs are also limited to 60. If you've hit this limit, it's probably time to resort
to a series of smaller templates.
Resources are limited to 200. The same rules apply here as before.
By default, you're limited to a total of 200 CloudFormation stacks. You can have
this limit increased simply by contacting AWS.

Circular dependencies
Something to keep in the back of your mind is that you may run in to a circular dependency
scenario, where multiple resources depend on each other for creation. A common example
is where two security groups reference each other in order to allow access between
themselves.

A workaround for this particular scenario is to use the
AWS::EC2::SecurityGroupEgress and AWS::EC2::SecurityGroupIngress types
instead of the ingress and egress rule types for AWS::EC2::SecurityGroup.

DSLs and generators
DSLs and generators can be a point of hot debate among infrastructure coders. Some love
them, some hate them. Some of the reasons why people love them include the following:

They allow CloudFormation to be written in a language that is more native to
them or their team.
They allow the use some advanced programming constructs. Iteration is a
particularly well-cited example.
Until YAML was supported by CloudFormation, using a DSL usually resulted in
code that was easier to read and far less verbose.

Some of the reasons people dislike them are:

DSLs have a history of becoming abandonware or significantly lagging behind
CloudFormation, although there are a couple of well-supported DSLs out there
Developers are potentially required to learn a new language and navigate
another new set of documentation, on top of learning CloudFormation and
navigating the AWS documentation
Google and Stack Overflow become a little less useful because one needs to
translate questions and answers

AWS Fundamentals

[29]

Beyond what is written here, this topic won't come up again in this book. We can't give
specific advice as to which road you should take because it's almost always a highly
personal and situational choice. However, a sensible approach, especially while coming to
grips with AWS and CloudFormation, would be to stick with YAML (or JSON) until you
get to the point where you think a DSL or generator might be useful.

Credentials
Under no circumstances do you want to have credentials hardcoded in your templates or
committed to your source code repository. Doing this doesn't just increase the chance your
credentials will be stolen, it also reduces the portability of your templates. If your
credentials are hardcoded and you need to change them, that obviously requires you to edit
your CloudFormation template.

Instead, you should add credentials as parameters in your template. Be sure to use the
NoEcho parameter when you do this so that CloudFormation masks the value anywhere the
parameters are displayed.

Stack policies
If there are resources in your stack you'd like to protect from accidental deletion or
modification, applying a stack policy will help you achieve this. By default, all resources are
able to be deleted or modified. When you apply a stack policy, all resources are protected
unless you explicitly allow them to be deleted or modified in the policy. Note that stack
policies do not apply during stack creation—they only take effect when you attempt to
update a stack.

The command-line interface tool
The AWS command-line interface (CLI) tool is an important piece of the AWS
administrator's toolkit.

The CLI tool is often one of the quickest and easiest ways to interact with the API. As a text-
based tool, it scales much easier than using the web console. Unlike the console, it can be
automated, for example, via scripts. The AWS application programming interface (API)
represents all the functionality available to you as an AWS administrator. It is also easier to
keep a track of through your command-line history. Like all good CLI tools, simple
individual commands can be chained (or piped) together to perform complex tasks.

AWS Fundamentals

[30]

The CLI tool is open source software, maintained on GitHub h t t p s ://g i t

h u b . c o m /a w s /a w s - c l i . For more detailed documentation, refer to the
AWS CLI homepage h t t p s ://a w s . a m a z o n . c o m /c l i .

Installation
The CLI tool requires Python 2.6.5 or greater.

The easiest way to install it is to use the Python package manager, pip:

pip install awscli

This will make the command aws available on your system.

Upgrade
AWS frequently releases new services and functionality. In order to use the new features,
you will need to upgrade the CLI tool.

To upgrade, run the following pip command periodically:

pip install --upgrade awscli

Configuration
Authentication between the CLI tool and the AWS API is done via two pieces of
information:

Access key ID
Secret access key

As the name suggests, you should keep your secret access key a secret! Be
careful where you store or send it.

https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://aws.amazon.com/cli

AWS Fundamentals

[31]

Once you have created a user, you can configure the tool to use it for authentication
purposes.

While you can configure the CLI tool with access keys directly, this should be avoided.
Instead, you should use profiles to store your credentials. Using profiles gives you a more
consistent and manageable centralized location to secure your secret keys.

Default profile
Without any additional configuration or options, your CLI tool commands will use the
default profile.

To set up the default profile, you can use the following command:

aws configure

This will prompt you for an access key ID, secret access key, region, and output format.

Named profiles
In addition to the default profile, you can configure other, named profiles. This is useful for
switching between users with different levels of access (for example, read-only and
administrator) or even between users in different accounts.

aws configure --profile <profile-name>

Once you have responded to the prompts, you can reference the named profile by passing
the --profile <profile-name> option with your command.

Environment variables
You can also configure the CLI via the use of environment variables:

export AWS_PROFILE=<profile-name>

AWS Fundamentals

[32]

While you should prefer to use profiles over setting your access ID and secret keys directly,
sometimes you may have to do it. If you must set your keys directly, do so via environment
variables so that you do not need to pass your keys around or hardcode them:

export AWS_ACCESS_KEY_ID=<access-key-id>
export AWS_SECRET_ACCESS_KEY=<secret-access-key>

Instance roles
When running the CLI tool on an EC2 instance, you can leverage the instance's IAM role to
make calls. This means you do not need to configure credentials or set environment
variables (manually).

Behind the scenes, the instance will retrieve and set its own AWS environment variables
that allow API calls. You do need to ensure the instance has appropriate permissions.

The AWS CLI tool comes preinstalled on AWS Linux-based instances.

Usage
All CLI tool commands are service based. Using service commands and subcommands, you
can make calls directly to the AWS API.

Commands
Each command represents an AWS service. While most services have one command
associated with them, some services have multiple commands (for example, S3 has s3 and
s3api).

Run aws help to see all the commands/services that are available—they
will probably have changed by the time this book prints!

AWS Fundamentals

[33]

Subcommands
Each command has a selection of subcommands to perform service-specific actions.

Run aws <command> help to see all subcommands.

Options
Subcommands take options, which start with --.

See all options and their purpose with aws <command> <subcommand>
help.

While most are optional (hence the name), those that are not surrounded by square brackets
([]) are required. You will get an error message (with appropriate details) if you do not
include them.

The built-in documentation is the best place to start looking for answers. There are usually
examples after all of the options have been described. Otherwise, there are plenty of
examples available online.

Some options are available to all or most commands, so they are particularly useful to
know.

Output
The CLI tool can be configured to output in JSON, table, or text format. To control the
output type, use the --output option.

To set a default output type for all your commands, set the output parameter for your
profile.

AWS Fundamentals

[34]

JSON
JavaScript Object Notation (JSON) (http://json.org/), a standard, machine- and human-
readable information interchange format. Here's what the AZs in the us-east-1 (North
Virginia) region look like represented as JSON:

aws ec2 describe-availability-zones --output json
{
"AvailabilityZones": [
 {
"State": "available",
"RegionName": "us-east-1",
"Messages": [],
"ZoneName": "us-east-1a"
 },
 {
"State": "available",
"RegionName": "us-east-1",
"Messages": [],
"ZoneName": "us-east-1c"
 },
 {
"State": "available",
"RegionName": "us-east-1",
"Messages": [],
"ZoneName": "us-east-1d"
 },
 {
"State": "available",
"RegionName": "us-east-1",
"Messages": [],
"ZoneName": "us-east-1e"
 }
]
}

http://json.org/

AWS Fundamentals

[35]

Table
The table format displays a text/ASCII table of results. This can be useful for generating
printable reports:

Text
The text output format only displays the resulting key/value response. No additional
formatting or display characters are added.

AWS Fundamentals

[36]

Querying
The CLI tool supports transforming the response from the API with the --query option.
This option takes a JMESPath query as a parameter and returns the query result.

JMESPath is a query language for JSON. For more information, visit
http://jmespath.org/.

As the query is processed as part of the command, it takes place on the server, not the client.
By offloading work to the server, you can reduce the size of the resulting payload and
improve response times.

JMESPath can be used to transform the response that you receive:

$ aws ec2 describe-availability-zones \
 --output json \
 --query 'AvailabilityZones[].ZoneName'
 [
 "us-east-1a",
 "us-east-1c",
 "us-east-1d",
 "us-east-1e"
]

It can also be used to filter the data that is received:

$ aws ec2 describe-availability-zones
 --output json
 --query "AvailabilityZones[?ZoneName == 'us-east-1a'].State"
 [
 "available"
]

Generate CLI skeleton
When performing complex tasks with the CLI tool, it may be easier to pass a JSON object of
options. This kind of interaction may signify that you should use one of the AWS software
development kits (SDKs).

http://jmespath.org/

AWS Fundamentals

[37]

Input
To generate a sample JSON object that will be accepted, run the command with the --
generate-cli-skeleton option:

$ aws ec2 describe-availability-zones --generate-cli-skeleton
{
"DryRun": true,
"ZoneNames": [
""
],
"Filters": [
 {
"Name": "",
"Values": [
""
]
 }
]
}

You can then copy, edit, and use this object to define your command options without
passing lots of individual options. It works best for commands with arrays of options or a
variable number of options.

Output
You can also get a preview of the output of a command by calling the command with the --
generate-cli-skeleton output option. This can speed up the process of combining
CLI commands as you can see a response without actually calling the API:

$ aws ec2 describe-availability-zones --generate-cli-skeleton output
{
"AvailabilityZones": [
 {
"ZoneName": "ZoneName",
"State": "State",
"RegionName": "RegionName",
"Messages": [
 {
"Message": "Message"
 }
]
 }
]
}

AWS Fundamentals

[38]

Pagination
Results returned by the CLI tool are limited to 1,000 resources by default.

This is not normally an issue, but at a certain scale, you may run into pagination issues. A
common example is files in an S3 bucket.

If you are absolutely sure you should be seeing a particular resource in a
response but cannot, check your pagination. The resource may be included
in the matching resources, just not in the part of the response that was
returned to you.

The following options allow you to control the number and starting point of the results
returned to you from the API:

--page-size: This limits how many resources will be displayed to you, but does
not actually limit the number returned. The default number of items (that is,
1,000) will still be processed and returned to you.
--max-items: This sets an upper limit on how many items will actually be
returned in the response. You may receive fewer items, but you will not receive
more than this number.
--starting-token: This changes where the response starts. Use this to display
subsequent results, beyond the first page.

aws s3 ls --bucket bucket-name --max-items 100 --starting-token None___100

Autocomplete
You can enable tab-completion of commands, subcommands, and options by configuring
the completer included with the CLI tool.

On OS X, Linux, and Windows systems with a bash shell, you can load the completer with
the following command:

complete -C 'which aws_completer'aws

By default, the aws_completer program is installed in /usr/local/bin. If your tool is
installed to a non-standard location, you will need to find it and change the which
aws_completer command to the relevant path.

AWS Fundamentals

[39]

Related tools
The following program work nicely with the AWS CLI tool, and may come in handy.

jq
jq is a lightweight tool for processing and transforming JSON. It follows the Unix philosophy
of doing one thing and doing it well. It can be found at https://stedolan.github.io/jq/.

While jq and JMESPath are similar, jq is a lot easier to get started with. It
also supports transforming JSON into plaintext; JMESPath queries will
always return more JSON.

You can pipe JSON results from the CLI tool to it, and easily transform the results for use
elsewhere. This example uses jq's property name selectors to convert JSON output to text:

$ aws ec2 describe-availability-zones --output json | jq
'.AvailabilityZones[].ZoneName'
"us-east-1a"
"us-east-1c"
"us-east-1d"
"us-east-1e"

https://stedolan.github.io/jq/

2
Managing AWS Accounts

In this chapter, we will cover the following topics:

Setting up a master account
Creating a member account
Inviting an account
Managing your accounts
Adding a service control policy

Introduction
We work with a lot of companies who maintain a large, ever-growing number of AWS
accounts. Keeping a handle on all these accounts has typically been quite difficult to
do—even for the most seasoned AWS users.

With the release of AWS Organizations, you now have the ability to centrally manage your
AWS accounts, to arrange them into logical groupings and hierarchies, and to apply
controls to them in ways which haven't previously been possible on the AWS platform.

Setting up a master account
All accounts that use AWS Organizations for billing and control purposes must have a
master account. This account controls membership to the organization, and pays the bills of
all the members (someone's got to do it).

Managing AWS Accounts

[41]

How to do it...
To set up a master account, perform the following steps:

Go to the My Organization section of the account you want to become the1.
master. You must be logged in with your root credentials (that is, those you
created the account with):

Managing AWS Accounts

[42]

In the AWS Organizations section of the AWS console, click on Create2.
organization, as shown in the following screenshot:

Managing AWS Accounts

[43]

Unless you have a specific requirement, choose ENABLE ALL FEATURES to get3.
the full benefit of organizations, as shown in the following screenshot:

Managing AWS Accounts

[44]

Now that your account has been converted, you can return to the AWS4.
Organizations page to see a list of all your accounts:

How it works...
While this is a very simple recipe, it's the first thing you must do before you can use any of
the useful features of AWS Organizations.

Managing AWS Accounts

[45]

Here you can see a high-level diagram of the relationships between master accounts,
members, and organizational units (OUs):

We deliberately enable all the features of organizations. The consolidated billing option is
available for backward compatibility—before organizations, consolidated billing was your
only option to link accounts.

Do not use your master account for day-to-day tasks. Since it is so important, it
doesn't make sense to risk using it and/or having access keys for it. If your
master account was to become compromised somehow, it would impact
all of your member accounts. Just don't do it.

The master account will always have a star next to its name.

Managing AWS Accounts

[46]

There's more...
All of the organizations functionality is exposed via the API. This means you can use the
AWS SDKs or the CLI tool to do the same things you would in the web console.

Multi-factor authentication
As mentioned in the consolidated billing confirmation e-mail, it is advisable to configure
multi-factor authentication (MFA) on your console. To do this, log in as your root user
(that is, the credentials you used when first creating your account), go to the Identity and
Access Management (IAM) console, and follow the Activate MFA on your root account
prompts.

Using the CLI
You can easily create your master account with the CLI tool. The following command will
turn your account into a master account, with all organizations features enabled:

aws organizations create-organization

See also
The Inviting an account recipe
The Creating a member account recipe

Creating a member account
Once your organization is up and running, the most common use you will have for it is
automating the account creation process. Accounts created inside an organization are
referred to as member accounts.

All charges incurred by a member account will be billed to the master account.

Getting ready
Obviously, you will need an organization to perform this recipe. See the other recipes in this
chapter to get started.

Managing AWS Accounts

[47]

How to do it...
Run the CLI tool command to create a new account, with appropriate values:1.

 aws organizations create-account \
 --email <member-account-owners@email.com> \
 --account-name <member-account-name> \
 --query 'CreateAccountStatus.Id'

This command will return a create account status request ID value that you2.
can use to check the status:

 aws organizations describe-create-account-status \
 --create-account-request-id <your-create-account-status-id>

How it works...
The command to create a member account in your organization is extremely simple.

The e-mail address used cannot be associated with any other AWS
accounts.

The account creating process takes some time, so it is done asynchronously. This means that
you won't receive an immediate status to your create-account command. Instead, the
command in this recipe will return a request ID.

This ID is then passed to another account to check the status of the creation. When the
status is CREATED, you can start to use the new account.

There's more...
While this functionality is definitely useful, the AWS Organizations service is relatively
new. This means there are a few features you should be aware of.

Accessing the member account
Once you've created your member account, it's time to put it to work!

Managing AWS Accounts

[48]

An IAM role will be present in the new account, with a default name of
OrganizationAccountAccessRole. This is so you can assume the role (from your master
account) and administer the member account. While this name is as good as any, it can be
configured by passing the --role-name argument when creating the account.

In order to assume the role, you need to know its Amazon Resource Name (ARN).
Working out the ARN is a multi-step process:

List your member accounts by running the following command in your master1.
account:

 aws organizations list-accounts

Find the account you created (by its name) and note the ID value in the record.2.
Using that ID, generate the role's ARN by following this pattern:

 arn:aws:iam::<your-member-account-
 id>:role/OrganizationAccountAccessRole

If you have changed the created role's name, update the last part of the ARN3.
accordingly.

See the recipes in Chapter 8, Security and Identity for information on how to best manage
multiple accounts.

Service control policies
The service control policies (SCPs) are another major feature of AWS Organizations. You
can apply them at multiple levels/resources, including accounts (both member accounts and
invited accounts). Check the other recipes in this chapter for more details.

Root credentials
Some activities still require the root credentials of the account. An example activity would
be closing (or deleting) an account (see the next section for more details).

In order to do this, you will need to do the password recovery process for the e-mail that
was associated with the account when the create-account request was sent.

Managing AWS Accounts

[49]

Deleting accounts
At the time of writing, there is no way to delete an account created in your organization via the
API. We can only imagine that being able to programmatically delete a member account
created in an organization will be a highly requested feature, and will be addressed soon. You
can still go into the member account and close it using the root credentials, but these don't
exist by default.

While you can technically delete your organization via the API, you cannot
do it if you have created any member accounts in your organization
(because you can't delete them, your organization will never be empty).
This should improve in the near future, but is still worth being aware of
now.

See also
The Setting up a master account recipe
The Adding a service control policy recipe
The Cross-account user roles recipe in Chapter 8, Security and Identity

Inviting an account
While it makes sense to create new accounts in your organization, what do you do with all
the other accounts you have now?

You can invite existing accounts to your organization, which means you can treat them just
like a member account from an administrative point of view. This greatly simplifies the
administrative overhead of your accounts, as there isn't a separate process for old and new
accounts.

As this is generally performed once for each existing account, we will use the console.

All the AWS organizations functionality is available via the SDKs and
AWS CLI tool. If you need to automate this process, you can.

Managing AWS Accounts

[50]

Getting ready
You must have enabled AWS Organizations for one of your accounts (your master account),
and have another account that has not been made part of an organization yet (that you will
invite).

How to do it...
From the AWS console of the master account, click on your username, and select1.
My Organization from the drop-down menu:

Managing AWS Accounts

[51]

You will be taken to the AWS Organizations console, where you will see your2.
current account:

Managing AWS Accounts

[52]

Click on the Invitations tab in the top-right of the console:3.

Managing AWS Accounts

[53]

Click on the Invite account button. Specify the account ID (or main e-mail4.
address) of the account to invite:

Managing AWS Accounts

[54]

Once you click Invite, you will be taken to a list of invitations where you can5.
view the status:

Managing AWS Accounts

[55]

At this stage, the target/invited account will receive an e-mail notifying them of6.
the invite:

Log in to the invited account and go to the My Organization link under the user7.
menu:

Managing AWS Accounts

[56]

In the AWS Organizations console, you can see the pending invite on the left:8.

Managing AWS Accounts

[57]

Clicking on the invite, you can see its details:9.

When the invite includes all features, you will be asked to confirm your10.
acceptance:

Managing AWS Accounts

[58]

Once confirmed, you can now see the details of the organization you have joined:11.

Managing AWS Accounts

[59]

At this stage, the master account will be notified of the accepted invite:12.

Managing AWS Accounts

[60]

Back in the master account, you can now see the new account alongside the13.
master:

How it works...
While there are many steps involved, the process of inviting an existing account is a
relatively simple handshake process. This means that both sides must actively initiate/accept
the invite, in order for it to succeed—an invite cannot be forced.

After specifying the target account's account ID (or e-mail address), the e-mail address
associated will be notified.

As part of the handshake process, the invited account must explicitly accept the invite.

It is important to note that the default invite type (and what we have used
in the recipe) is to use the full feature set for AWS Organizations. As noted
in the console, this means that the invited account could be prevented from
leaving the organization if the relevant policies are configured.

After confirmation, both parties will receive an e-mail detailing the membership. From this
point forward, the bill for the invited account will be paid by the master account.

Managing AWS Accounts

[61]

There's more...
Invited accounts are treated differently to accounts created via the organizations
functionality.

Removing accounts
Unlike member accounts (which are created via the AWS Organizations API), invited
accounts can be removed from an organization.

Consolidated billing
As an alternative to the full feature invite, it is possible to specify just consolidated billing
mode for an organization. In this mode, no OUs or policies will be available, only the billing
relationship will be shared between the accounts (that is, the master account will pay the
bill of the member accounts).

Any pre-existing accounts that were configured to use consolidated billing
will have been automatically migrated to AWS Organizations in consolidated
billing mode.

See also
The Creating a member account recipe

Managing your accounts
There are a number of ways to group and arrange your AWS accounts. How you do this is
completely up to you, but here are a few examples to consider:

Business unit (BU) or location: You may wish to allow each BU to work in
isolation on their own products or services, on their own schedule, without
impacting other parts of the business
Cost center: Grouping according to cost may help you track spend versus
allocated budget

Managing AWS Accounts

[62]

Environment type: It may make sense to group your development, test, and
production environments together in a way which helps you manage the controls
across each environment
Workload type or data classification: Your company may want to isolate
workload types from each other, or ensure that particular controls are applied to
all accounts containing a particular kind of data

In the following fictitious example, we have isolated the Sitwell Enterprises Account from
the rest of the organization by placing it in an OU called Sudden Valley. Perhaps they
operate in a different geographical location and have different regulatory requirements
around controls and access.

Organization hierarchy

Note that while it's also technically possible for us to put the master account inside an OU,
we avoid doing this to make it obvious that:

It's the master account and has control over the entire organization
The rules we set, using SCPs for the member accounts in our organization, do not
apply to the master account (because they can't)

Learn more about SCPs in the Adding a service control policy recipe in this chapter.

Managing AWS Accounts

[63]

Getting ready
Before we can proceed, you should have already done the following:

Set up a master AWS account
Created an organization
Created member accounts in your organization, or manually added member
accounts (by invitation) to your organization

How to do it...
We'll now cover the one-line commands you'll need to perform the common tasks required
to manage your OU. These commands can only be performed in your master account.

Getting the root ID for your organization
You can run this command to get the ID of the root for your organization. The root is
created automatically for you when you create your organization in your master account.
The ID returned to you will look something like this: r-bmdw.

aws organizations list-roots

Creating an OU
To create an OU, perform the following steps:

Determine where you'd like this OU to live. If it lives directly underneath the1.
root, then your root ID will be the parent. Alternatively, if this OU is going to be a
child of another OU, use the ID of the OU instead. Obviously, if this is the first
OU you're creating, the root will be the parent.

Use the CLI to create your OU like so:2.

 aws organizations create-organizational-unit \
 --parent-id <root-id or parent-ou-id> \
 --name <desired-ou-name>

Managing AWS Accounts

[64]

Getting the ID of an OU
If you need to fetch the ID of an OU, you can use the CLI to do so; note that you'll need to
know the parent of the OU. Here is how you'd get a list of all the OUs and their IDs in a
root or OU:

aws organizations list-organizational-units-for-parent \
 --parent-id <root-id or parent-ou-id>

Adding an account to an OU
To add an account to an OU, perform the following steps:

When an account is initially added to your organization, it will be a child of the1.
organization root. To add it to the OU you just created, you need to move it using
the following CLI command:

 aws organizations move-account \
 --account-id <twelve-digit-account-id> \
 --source-parent-id <root-id> \
 --destination-parent-id <new-parent-ou-id>

If you wish to move an account from one OU to another, simply use the same2.
command but use the existing parent OU ID instead of the root ID.

Removing an account from an OU
To remove an account from an OU, perform the following steps:

If you wish to remove an account from an OU, you have two options. You can1.
move it to another OU, or you can move it back to the root. If you decide you
want to delete an OU, you'll need to make sure no accounts exist inside it first
(we'll show you how to do this next).

Run the following command to move an account back to the root:2.

 aws organizations move-account \
 --account-id <twelve-digit-account-id> \
 --source-parent-id <existing-parent-ou-id> \
 --destination-parent-id <root-id>

Managing AWS Accounts

[65]

Deleting an OU
To delete an OU, you'll first need to make sure it's empty by removing its child accounts (as
mentioned previously). You can then go ahead and delete the OU like so:

aws organizations delete-organizational-unit \
 --organizational-unit-id <ou-id>

How it works...
If done right, grouping your accounts together using OUs will help you simplify the way
you manage and administer them. Try to use only just enough OUs to get the job done. The
idea is to use OUs to make your life easier, not harder.

There's more...
The organizational control policies (OCPs) can be attached to your root, OU, or
AWS accounts. At this time, only one kind of OCP is supported: SCP.
Accounts can only belong to one OU or root.
Similarly, OUs can only belong to one OU or root.
It's best to avoid deploying resources in the master account because this account
can't be controlled with SCPs. The master account should be treated as a
management account for audit, control, and billing purposes only.

See also
The Adding a service control policy recipe

Managing AWS Accounts

[66]

Adding a service control policy
Before we begin, we should talk through what SCPs are and how they apply to your
organization.

An SCP consists of a policy document which defines (by way of filtering) the services and
actions which are able to be used and performed within an OU or in an AWS account. If
you've previously configured an IAM policy, then you will have more than enough
background knowledge to get started with SCPs. Apart from a couple of minor exceptions,
they look exactly the same.

SCPs can be applied at different levels throughout an organization. These are the levels,
starting from the bottom and going up:

AWS account level: An SCP applied to an AWS account takes effect on only that
account. It's important to note that the SCP is very separate from the IAM policies
which live inside the account. For example, an SCP might allow full access to S3
for an AWS account but the IAM policies inside the account may deny it (for
certain roles and/or users).
OU level: An SCP applied at the OU level will apply to all the AWS accounts
which live inside the OU as well as any child OUs (remember that an OU can by
a member of an OU).
Root level: If an SCP is applied at this level, it will apply to all AWS accounts
inside the organization.

Things can start to get really interesting when you have an SCP applied at multiple levels.
The intersection of the polices at the root, OU, account, and IAM levels is evaluated and will
determine whether or not an API call is allowed to be made. For example, someone
belonging to an IAM role which has full administrator access to an account still won't be
able to call any EC2 APIs if any of the SCPs above it (account, OU, root) deny EC2 access.

Managing AWS Accounts

[67]

In the following example, we have a top-level OU, Austero Bluth, with an SCP which
allows access to all AWS resources for all OUs and accounts underneath it:

Organization hierarchy and policies

Austero Bluth has two child OUs; let's focus on Sudden Valley. It has an SCP which allows
only EC2 and S3. By using a whitelisting approach, anything except these two services will
be denied. Remembering that SCPs act like a filter, any OU or AWS accounts living
underneath the Sudden Valley OU will, at most, have access to EC2 and S3.

The Sitwell Enterprises Account also has an SCP attached to it. This particular SCP allows
S3 and SQS. Note that the SQS statement will have no effect here because the Sitwell
account is inside an OU which does not allow SQS. Also note that this account has no access
to EC2 despite the Sudden Valley OU allowing it; this is because EC2 wasn't explicitly
allowed in the SCP attached to the account.

At the IAM level, we have a role in the Sitwell AWS account which allows full
administrator privileges. But, because the intersection of the SCPs governing this account
will only allow S3, anyone using this role will be denied access if they attempt to use EC2 or
SQS, for example.

Managing AWS Accounts

[68]

Let's also take a look at the Bluth Company Account. The SCP which is attached to it allows
full AWS access; however, it lives inside an OU (Balboa Bay) which only allows EC2, RDS,
and S3. There is an IAM role inside this account which also allows full admin access but,
again, administrators in this account will be limited to EC2, RDS, and S3.

Getting ready
We're going to step through creating an SCP and adding it to an OU.

You're going to need the ID of the OU in question; you can fetch it from the organizations
web console or use the CLI. It will look something like this: ou-bmdw-omzypry7.

We'll be preparing a policy document as well. In this example, we're going to add an SCP to
the Sudden Valley OU to allow access to EC2 and S3. Here's what our SCP looks like:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":["EC2:*","S3:*"],
 "Resource":"*"
 }
]
}

How to do it...
Open a new file in your text editor, add your JSON policy document, and save it.1.
Run the create-policy CLI command like so. We're getting a little tricky with2.
the tr command here: we're using it to remove the carriage returns from the
policy document, so pay close attention to the syntax in the example provided.
Unfortunately, the organizations CLI doesn't allow us to provide the path to the
policy document directly:

 aws organizations create-policy \
 --content "$(tr -d '\n' < my-policy-file.json)" \
 --description "A policy description goes here" \
 --name "My policy" \
 --type SERVICE_CONTROL_POLICY

Managing AWS Accounts

[69]

If the preceding CLI command works successfully, some JSON will be returned3.
to you containing the ID of the policy we just added. It will look something like
this: p-o9to04s7.
You can now go ahead and attach this policy to the OU. Use the following CLI4.
command to do this:

 aws organizations attach-policy \
 --target-id <ou-or-aws-account-id> \
 --policy-id <policy-id>

Unfortunately, the preceding command does not output anything if it ran5.
successfully. You can double-check your handiwork in the AWS web console or
use the following CLI command to verify that it worked:

 aws organizations list-targets-for-policy \
 --policy-id <policy-id>

How it works...
Again, the policies you add will act as a filter at each level of your organizational structure.
With this in mind, it might be a good time to point out that testing your policies on a single
account before applying them organization-wide will save you a lot of heartache. Making
sweeping changes to an SCP living at the top of your organization may create an unforeseen
situation at the AWS account level at the bottom of the chain. A local admin in an AWS
account is not able to override SCPs.

There's more...
At the time of publishing, you are only able to have a single root inside an
organization (it's created automatically for you when you create an organization).
For obvious reasons, the master account is not affected by any SCPs which are
attached to it. You may also notice that it's technically possible to place the master
account in an OU; again, it will be unaffected by any SCPs which have been
attached to that OU.
Since the master account is unaffected by SCPs, it's a good idea to leave it as
empty as possible and to not create any resources in it. Use child AWS accounts
instead so you can apply fine-grained controls to them.
SCPs are required on each OU and account but shouldn't be considered the only
form of access control for your AWS accounts. Apply IAM where appropriate.

Managing AWS Accounts

[70]

When creating our policy, we have to specify a --type parameter. At the time of
publishing, AWS only supports one variant of OCP: SERVICE_CONTROL_POLICY.
As much as possible, follow the principle of least privilege. You want to give
your AWS accounts access to only the services they need. This helps you mitigate
damage caused by misclicks, programming errors, or compromised accounts.
In the long run, you may find it advantageous to not assign controls at the root
level. Instead, you may be better off adding all accounts to an OU and applying
your controls to the OU instead.
Your policies can take a whitelisting or blacklisting approach. In this recipe,
we've used a whitelist approach, but you may instead prefer to allow your OUs
and accounts to use all services except the ones you explicitly disallow. You
should choose one of these approaches and stick with it, as mixing the two will
cause you lots of confusion down the road.
Unlike IAM policies, you can't specify conditions in SCP documents and
Resource must be *.

See also
The Federating with your AWS account recipe in Chapter 8, Security and Identity for
some discussion around IAM roles

3
Storage and Content Delivery

In this chapter, we will cover the following recipes:

Hosting a static website
Caching a website
Working with network storage
Backing up data for compliance

Introduction
Each of these recipes is backed by a CloudFormation template that makes them quick and
easy to reproduce and modify.

Storage
Storage is an integral part of any organization's cloud usage. When used correctly, servers
are short-lived and replaceable. This means that having a durable, available storage service
is critical to persisting and sharing state.

Storage and Content Delivery

[72]

Here is a high-level summary of the storage services AWS offers:

Storage services from AWS

Elastic Block Store
Elastic Block Store (EBS) provides block-device storage as volumes to EC2 instances. It
behaves similarly to a storage area network (SAN) and offers the lowest-latency access of
the various storage services offered. EBS volumes can only be accessed by one instance at a
time. The size of a volume must be specified when they are provisioned, and cannot be
changed after.

Volumes are hosted on redundant hardware in a specific AZ, but they do not offer
redundancy across AZs.

Storage and Content Delivery

[73]

Some recommended use cases for EBS are:

Instance boot volumes
Intensive data processing
Transactional writes

We will cover EBS in more detail in the Chapter 4, Using AWS Compute, as its primary use
is as the underlying storage for EC2 instances.

Elastic File System
Elastic File System (EFS) provides a file-storage service that can be accessed
simultaneously by many instances, similar to Network Attached Storage (NAS). While not
as fast as EBS, it still provides low-latency access. As it may be accessed by multiple clients
at a time, it can reach much higher levels of throughput than EBS. EFS filesystems also in
size scale dynamically and so do not need to be preallocated or modified during use.
Filesystems are stored redundantly across AZs.

Some recommended use cases for EFS are:

Home directories
Serving shared web content
Content management

EFS performance scales according to the filesystem size. As the filesystem
size is not preallocated, the only way to increase your performance is to
add more data to it.

Simple Storage Service
Simple Storage Service (S3) provides a web-based service for hosting files. Files are
referred to as objects and grouped in buckets. Objects are effectively a key-value pair,
similar to a document database. Keys are used like file paths, with / used as a separator and
grouping character. Buckets can be easily accessed like a website via an automatically
generated domain name.

Storage and Content Delivery

[74]

Due to being associated with a domain name, bucket names must be
globally unique.

Some recommended usecases for S3 are:

Static website assets
Sharing large files
Short-term (a.k.a. warm) backups

Glacier
Glacier is a companion service to S3, but is the cold storage option. Cold storage is a service
where you are not able to directly access your data; you must lodge a request for data to be
restored (to S3), and you are notified when it is ready. A physical example of cold storage
might be backup tapes that are stored in a secure location. Similar to S3, files are referred to
as objects. Files are grouped together and stored in archives. Archives can be created and
deleted, but never modified. Archives are grouped together in to vaults, which allow you to
control access.

The shortest restoration time is 1-5 minutes (with limitations). Standard restoration times
take 3-5 hours, with some other options available.

Some recommended usecases for Glacier are:

Long-term (a.k.a. cold) backups
Compliance backups

Content delivery
Content delivery is aimed at quickly and efficiently distributing your content to users. The
best practice way to do this is to leverage a Content Delivery Network (CDN). Amazon's
CDN service is Amazon CloudFront.

Storage and Content Delivery

[75]

While AWS currently has 14 regions, it has an additional 68 edge locations that can be used
as part of CloudFront. This gives you a massive global network of resources you can use to
improve your users' experience of your application.

CloudFront works closely with S3 to serve static assets. In addition to this, it can be
configured to cache dynamic content. This gives you an easy way to improve the
performance of applications that are not even aware of CloudFront.

CloudFront websites are referred to as distributions which speaks to their CDN role.

Distributions can also be used to provide a common frontend for multiple,
disparate, sources of content.

Hosting a static website
It's really easy to host a static website on AWS. It turns out it's also dirt cheap, fast, reliable,
and massively scalable too.

You do this by storing your content in an S3 bucket and configuring that bucket to behave
like a website.

It's important to note that we're talking about static content only. This method doesn't work
for websites requiring server-side processing or some other backend functionality.
WordPress, for example, requires PHP which means you need a fully functional web server
to run it. S3 won't interpret PHP pages for you, it will just serve files straight to the browser.

So, why would you want to host a static website in S3? Common scenarios we see are:

Simply, your website is completely static and you don't change it very often.
Your company is launching a new product or service. You're expecting very large
numbers of customers to visit a mini-site within a short time period; likely more
traffic than your existing web hosting environment can handle.
You need somewhere to host a failover or down for maintenance style page which
is separate from your existing web hosting environment.

Storage and Content Delivery

[76]

HTTPS is not supported by S3 when it is used to serve static content.

How to do it...
This recipe provides you with the CloudFormation necessary to create:

An S3 bucket for hosting your content
A Route 53 hosted zone and necessary DNS records
A redirection from www to root/apex for your domain

After running this CloudFormation you will of course need to upload your content to the
buckets which CloudFormation created for you.

Storage and Content Delivery

[77]

Creating S3 buckets and hosting content
In this example, we're actually going to create two S3 buckets for our site
http://www.example.org/. They correspond to the hostnames:

www.example.org

example.org

It might be a good time to remind you that S3 bucket names are globally
unique. You'll also need to substitute example.org for a domain which
you own.

We're going to put all our content in our example.org bucket and tell S3 that1.
requests to www.example.org should be redirected to the other bucket. Here's
what the relevant parts of the CloudFormation would look like for creating these
buckets (note that we'll be expanding on this example as we proceed through this
recipe):

 Resources:
 ApexBucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: !Ref DomainName
 WWWBucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: !Sub
 - www.${Domain}
 - Domain: !Ref DomainName

We won't be hardcoding our domain name into the bucket names. Instead we're2.
going to supply our domain as a parameter to the CloudFormation template in
order to maximize its reusability, then reference it via !Ref DomainName. To
keep this recipe as simple as possible we're going to set up a single page website.
In the real world, your website will of course consist of multiple files but the
process you need to follow is exactly the same.

http://www.example.org/

Storage and Content Delivery

[78]

Configuring the index document:3.
The index document is the file which S3 will serve by default when
someone types your domain name into the address bar in their
browser. This precludes the user from having to type the full path to a
file, that is, example.org/index.html.
Typically, your index document will be called index.html. We'll
provide a code snippet for this file towards the end of this chapter.

Configuring the error document:4.
The error document is the file S3 will serve if something goes wrong
(missing files, forbidden access, bad requests, and so on). To keep
things consistent we're going to call ours error.html. Again, we'll
provide a code snippet for this later in the chapter.

Enabling website hosting on your bucket:5.
As mentioned previously, we're going to need to tell S3 that it should
serve static website content from our example.org bucket. Often users
will perform this configuration through the S3 web console. We're
going to do it in CloudFormation however. The CLI also offers a nice
one-liner for doing this. You're not going to need to run this command,
we're just adding it here for reference:

 aws s3 website s3://example.org/
 --index-document index.html --error-document error.html

Setting up redirection from the www hostname:6.
When performing this task manually one has little option but to fire up
the web console and configure the www.example.org bucket to
redirect to the example.org bucket. There's no handy one-line CLI
command for this one. Fortunately, it's easy in CloudFormation as
you'll soon see in the upcoming CloudFormation snippet.

Configuring permissions:7.
The last bucket setup task is to configure permissions. By default S3
buckets are private and only the bucket owner can see its contents. This
is not much use to us in this scenario because we need everyone to be
able to see our bucket contents. This is a public website after all.

Storage and Content Delivery

[79]

If we were configuring our bucket manually we would apply a bucket policy8.
which looks something like this:

 {
 "Version":"2012-10-17",
 "Statement": [{
 "Sid": "Allow Public Access to everything in our bucket",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::example.org/*"
 }
]
 }

Fortunately, in CloudFormation the task is much simpler. Building on the9.
previous example, the Resources section of our CloudFormation template now
looks like this:

 ApexBucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName:
 Ref: DomainName
 AccessControl: PublicRead
 WebsiteConfiguration:
 IndexDocument: index.html
 ErrorDocument: error.html
 WWWBucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName:
 Fn::Join: [., [www, Ref: DomainName]]
 AccessControl: BucketOwnerFullControl
 WebsiteConfiguration:
 RedirectAllRequestsTo:
 HostName:
 Ref: ApexBucket

Storage and Content Delivery

[80]

Creating a hosted zone
In order to start adding DNS records we first need to add a hosted zone to Route 53. As you
can see in the following code, this is reasonably simple to do. The Name we are going to
supply will be provided as a parameter to our CloudFormation template:

DNSHostedZone:
 Type: "AWS::Route53::HostedZone"
 Properties:
 Name:
 Ref: DomainName

Creating DNS records
Now that we have a hosted zone we can go ahead and create DNS records for it.1.
For this we use the AWS resource type AWS::Route53::RecordSetGroup.
We're going to create an A record for our domain's root/apex entry and we'll2.
make it an alias. This alias will be configured to point to the AWS endpoint for
S3-hosted websites in the particular region we choose to run this CloudFormation
in.
In order to archive region portability in our template, we'll use a mapping to3.
provide all the endpoints. The values in this map are published by AWS in their
API endpoints documentation. You won't need to look these up, however,
because our code sample provides the most up-to-date endpoints (as of the time
of writing this). The endpoints tend not to change, but the list obviously grows
when AWS adds more regions.
The mapping will look like this:4.

 us-east-1:
 S3HostedZoneID: Z3AQBSTGFYJSTF
 S3AliasTarget: s3-website-us-east-1.amazonaws.com
 us-east-2:
 S3HostedZoneID: Z2O1EMRO9K5GLX
 S3AliasTarget: s3-website.us-east-2.amazonaws.com

We'll also need a CNAME for www which will point at our WWWBucket so that
redirection can take place. The final resource for our DNS records will look like
this:

 DNSRecords:
 Type: "AWS::Route53::RecordSetGroup"
 Properties:
 HostedZoneId:

Storage and Content Delivery

[81]

 Ref: DNSHostedZone
 RecordSets:
 - Name:
 Ref: DomainName
 Type: A
 AliasTarget:
 HostedZoneId:
 Fn::FindInMap: [RegionMap, Ref: "AWS::Region",
 S3HostedZoneID]
 DNSName:
 Fn::FindInMap: [RegionMap, Ref: "AWS::Region",
 S3AliasTarget]
 - Name:
 Fn::Join: [., [www, Ref: DomainName]]
 Type: CNAME
 TTL: 300
 ResourceRecords:
 - Fn::GetAtt: WWWBucket.DomainName

We're ready for launch. It's time to create our CloudFormation stack. You can do5.
so using the following CLI command:

 aws cloudformation create-stack \
 --stack-name static-website-1 \
 --template-body file://03-hosting-a-static-website.yaml \
 --parameters \
 ParameterKey=DomainName,ParameterValue=<your-domain-name>

Storage and Content Delivery

[82]

Uploading website content
It's now time to upload some content to our S3 buckets. Here are the snippets we promised
you earlier. There's nothing fancy here. Once you've got these examples working, you can
try replacing them with your real website content:

index.html

 <html>
 <head>
 <title>Welcome to exmaple.org</title>
 </head>
 <body>
 <h1>example.org</h1>
 <p>Hello World!</p>
 </body>
 </html>

error.html

 <html>
 <head>
 <title>Error</title>
 </head>
 <body>
 <h1>example.org</h1>
 <p>Something went wrong!</p>
 </body>
 </html>

How it works...
That's it! As soon as S3 has an index.html file to serve up, you will be hosting a single-
page website on S3. Go ahead and test it out. The supplied CloudFormation example will
output a URL you can use to see your new website. After you've verified it's working, you
can go ahead and upload your real static website and enjoy fast, cheap, and server-free
hosting.

There's more...
Let's look at some additional things to consider.

Storage and Content Delivery

[83]

Delegating your domain to AWS
While we've created a hosted zone and some DNS records in Route 53, no one can actually
see them yet. In order to send your website visitors to your new S3 static website, you'll
need to delegate your domain to Route 53. This is left to you as an exercise; however, there
are some important things to remember:

The DNS servers to delegate your domain to can be found in the NS record for
your hosted zone.
If your domain is already live and production-like, you'll need to make sure all
your DNS records for your zone are recreated in Route 53, including things such
as MX records, which are critical for the continuity of your e-mail service.
Before delegating to AWS, you may consider reducing the TTL values on your
DNS records. This will be useful if for some reason you need to re-delegate or
make changes to them. Once your DNS setup is stable, you can increase TTLs.

Cross-origin resource sharing
It's worth discussing cross-origin resource sharing (CORS) here because the more static
web content hosting you do in S3, the higher your chances are of needing to know about
this, particularly where web fonts are concerned.

Some browsers implement a same origin policy restriction. This prevents the browser from
loading certain kinds of assets from hostnames that are different from the page being
displayed to the user. Web fonts fall under this restriction and are an often-cited example
because when they don't load correctly, your website will usually look a lot different to how
you intended. The solution to this is to add a CORS configuration to your bucket to allow its
content to be loaded by the particular origin or hostname that requested it.

We'll leave the CORS configuration out of our full example, but if you need to add one to
your bucket, here's how you can do it. Update your AllowedOrigins property to look
similar to the following CloudFormation and you should be all set:

 ApexBucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: !Ref DomainName
 AccessControl: PublicRead
 WebsiteConfiguration:
 IndexDocument: index.html
 ErrorDocument: error.html
 CorsConfiguration:
 CorsRules:

Storage and Content Delivery

[84]

 - AllowedOrigins:
 - example.net
 - www.example.net
 - example.com
 - www.example.com
 AllowedMethods:
 - GET
 MaxAge: 3000
 AllowedHeaders:
 - Content-*
 - Host

Caching a website
In this recipe, we'll show you how to use AWS CloudFront to cache your website.

The primary reasons you'll want to consider doing this are as follows:

Copies of your content will be geographically located closer to your end users,
thus improving their experience and delivering content to them faster.
The burden for serving content will be removed from your fleet of servers. This
could potentially result in a large cost saving if you're able to turn off some
servers or reduce your bandwidth bill.
You may need to be shielded from large and unexpected spikes in traffic.
While not the focus of this chapter, CloudFront gives you the ability to
implement Web Application Firewall (WAF) as an added layer of protection
from the bad guys.

Unlike most AWS services, which are region specific, CloudFront is a
global service.

Getting ready
First of all, you're going to need a publicly accessible website. This could be a static website
hosted in S3, or it could be a dynamically generated website hosted in EC2. In fact, your
website doesn't even need to be hosted in AWS in order to use CloudFront. As long as your
website is publicly accessible, you should be good to go.

Storage and Content Delivery

[85]

You'll also need to have the ability to modify the DNS records for your website. Instead of
pointing to your web server (or S3 bucket), we'll eventually point them to CloudFront.

About dynamic content
If your website consists of mostly dynamic content, you can still benefit from implementing
CloudFront.

First of all, CloudFront will maintain a pool of persistent connections with your origin
servers. This lessens the time it takes for files to be served to your users because the number
of three-way handshakes they'll need to perform is reduced.

Second, CloudFront implements some additional optimizations around TCP connections for
high performance. More data is able to initially be transferred over the wire because
CloudFront uses a wider initial TCP window.

Finally, implementing a CDN such as CloudFront does give you the opportunity to review
your caching strategy and how you use cache-control headers. If your home page is
dynamically generated, you'll get some benefit straight away by serving it via CloudFront,
but the benefits will be much greater if you were to let CloudFront cache it for a few
minutes. Again, cost, end user, and backend performance are all things you should take into
consideration.

Configuring CloudFront distributions
Distributions can be configured with a fairly wide array of options. Our recipe is going to be
quite simple so that you can get up and running as quickly as possible. But we will talk
through some of the more common configuration options:

Origins: A distribution needs to have at least one origin. An origin, as the name
indicates, is where your website content originates from your public-facing
website. The properties you'll most likely be concerned with are:

Origin Domain Name: This is the hostname of your public-facing
website. The CloudFormation template we supply accepts this
hostname as a parameter.
Origin Path: It's possible to configure the distribution to fetch
content from a directory or subfolder at the origin, for example,
/content/images if you were using CloudFront to cache images
only. In our case, we are caching our entire website, so we don't
specify an Origin Path at all.

Storage and Content Delivery

[86]

Origin ID: This is particularly important when you are using
nondefault cache behavior settings and therefore have configured
multiple origins. You need to assign a unique ID to the origins so
that the cache behaviors know which origin to target. There'll be
more discussion on cache behaviors later.
HTTP Port, HTTPS Port: If your origin is listening on nonstandard
ports for HTTP or HTTPS, you would use these parameters to
define those ports.
Origin Protocol Policy: You are able to configure the distribution
to talk to your origin via:

HTTP Only
HTTPS Only
Match Viewer

The Match Viewer option forwards requests to the origin based on
which protocol the user requested with in their browser. Again, we
are keeping things quite simple in this recipe, so we'll be opting for
HTTP Only.

Logging: Keep in mind that because less traffic will be hitting your origin, fewer
access logs will also be captured. It makes sense to have CloudFront keep these
logs for us in an S3 bucket. This is included in the CloudFormation provided with
this recipe:

Cache behaviors: In this recipe, we'll configure a single (default)
cache behavior, which will forward all requests to our origin.
CloudFront: It allows you to get quite fine grained with the
behaviors you configure. You might, for example, want to apply a
rule to all the .js and .css files on your origin. Perhaps you want
to forward query strings to the origin for these file types. Similarly,
you might want to ignore the TTL the origin is trying to set for
image files, instead telling CloudFront to cache for a minimum of
24 hours.

Aliases: These are additional hostnames you want the distribution to serve traffic
for. For example, if your Origin Domain Name is configured to
loadbalancer.example.org, then you probably want aliases that look
something like this:

example.org

www.example.org

Storage and Content Delivery

[87]

 The CloudFormation template provided with this recipe expects one or more
 aliases to be provided in the form of a comma-delimited list of strings.

Allowed HTTP Methods: By default, CloudFront will only forward GET and
HEAD requests to your origin. This recipe doesn't change those defaults, so we
don't declare this parameter in the provided template. If your origin is serving
dynamically generated content, then you will likely want to declare this
parameter and set its values to GET, HEAD, OPTIONS, PUT, POST, PATCH,
and DELETE.
TTLs (minimum/maximum/default): You can optionally define how long you'd
like objects to stay in CloudFront's caches before expiring and being refetched
from the origin. Again, we've opted to stick to CloudFront's default values to
keep this recipe simple, so we've omitted this parameter from our template. The
defaults are as follows:

Minimum TTL: 0 seconds
Default TTL: 1 day
Maximum TTL: 1 year

Price Class: By default, CloudFront will serve your content from all of its edge
locations, giving you the maximum performance possible. We're going to deploy
our distribution using the lowest possible price class, Price Class 100. This
corresponds to edge locations in the United States, Canada, and Europe. Users
from Australia would not benefit too much from this Price Class, but you're also
paying less for it. Price Class 200 adds Asian regions, and Price Class All adds
South America and Australia.

A comprehensive list and detailed explanation on which values can be
specified when creating a CloudFront distribution can be found here at h t
t p ://d o c s . a w s . a m a z o n . c o m /A m a z o n C l o u d F r o n t /l a t e s t /D e v e l o p e r G u i d

e /d i s t r i b u t i o n - w e b - v a l u e s - s p e c i f y . h t m l .

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html

Storage and Content Delivery

[88]

How to do it...
The first (and only) thing we need to do is configure a CloudFront distribution as shown in
the following diagram:

Create a new CloudFormation template and add the following code:1.

 AWSTemplateFormatVersion: '2010-09-09'
 Parameters:
 OriginDomainName:
 Description: The hostname of your origin
 (i.e. www.example.org.s3-website-ap-southeast-2.amazonaws.com)
 Type: String
 Aliases:
 Description: Comma delimited list of aliases
 (i.e. example.org,www.example.org)
 Type: CommaDelimitedList
 Resources:
 DistributionALogBucket:
 Type: AWS::S3::Bucket

Storage and Content Delivery

[89]

 DistributionA:
 Type: AWS::CloudFront::Distribution
 Properties:
 DistributionConfig:
 Origins:
 - DomainName:
 Ref: OriginDomainName
 Id: OriginA
 CustomOriginConfig:
 OriginProtocolPolicy: http-only
 Enabled: true
 Logging:
 IncludeCookies: false
 Bucket:
 Fn::GetAtt: DistributionALogBucket.DomainName
 Prefix: cf-distribution-a
 Aliases:
 Ref: Aliases
 DefaultCacheBehavior:
 TargetOriginId: OriginA
 ForwardedValues:
 QueryString: false
 ViewerProtocolPolicy: allow-all
 PriceClass: PriceClass_100
 Outputs:
 DistributionDomainName:
 Description: The domain name of the CloudFront Distribution
 Value:
 Fn::GetAtt: DistributionA.DomainName
 LogBucket:
 Description: Bucket where CloudFront logs will be stored
 Value:
 Ref: DistributionALogBucket

Using the template we created above, go ahead and create your CloudFront2.
distribution. Expect to wait around 20-25 minutes for this stack to finish creating.
It takes a while for your distribution configuration to be pushed out to all the
AWS CloudFront locations:

 aws cloudformation create-stack \
 --stack-name cloudfont-cache-1 \
 --template-body file://03-caching-a-website.yaml \
 --parameters \
 ParameterKey=OriginDomainName,ParameterValue=<your-domain-name> \
 ParameterKey=Aliases,ParameterValue='<alias-1>\,<alias-2>'

Storage and Content Delivery

[90]

Working with network storage
In this recipe, we will use the Amazon EFS to provide network-based storage to instances.

Some of the benefits of using EFS compared to other AWS services are as follows:

Guaranteed write order between distributed clients
Automatic resizing—no need to preallocate and no need to downsize
You only pay for the space you use (per GB)—no transfer or extra costs

Getting ready
This example works with the default VPC and subnets, present in all AWS accounts when
they are created. Even if you have changed you network configuration, all you need is a
working VPC with two or more subnets in different AZs for this recipe.

How to do it...
Open your favorite text editor, and start a new CloudFormation template by1.
defining the AWSTemplateFormatVersion and Description:

 AWSTemplateFormatVersion: "2010-09-09"
 Description: Create an EFS file system and endpoints.

Create a top-level Parameters section, and define the required parameters,2.
VpcId and SubnetIds, inside it:

 VpcId:
 Description: VPC ID that contains the subnets that will
 access the file system
 Type: AWS::EC2::VPC::Id
 SubnetIds:
 Description: Subnet IDs allowed to access the EFS file system
 Type: List<AWS::EC2::Subnet::Id>

Create a top-level Resources property, which will contain all the resources3.
defined.

Storage and Content Delivery

[91]

Under the Resources property, add the EFS filesystem resource:4.

 FileSystem:
 Type: AWS::EFS::FileSystem
 Properties:
 FileSystemTags:
 - Key: Name
 Value:
 Fn::Sub: "${AWS::StackName} EFS File System"
 PerformanceMode: generalPurpose

Add mount target resources for connecting to the filesystem you just created:5.

 MountTargetA:
 Type: AWS::EFS::MountTarget
 Properties:
 FileSystemId:
 Ref: FileSystem
 SecurityGroups:
 - Fn::GetAtt: MountTargetSecurityGroup.GroupId
 SubnetId:
 Fn::Select: [0, Ref: SubnetIds]
 MountTargetB:
 Type: AWS::EFS::MountTarget
 Properties:
 FileSystemId:
 Ref: FileSystem
 SecurityGroups:
 - Fn::GetAtt: MountTargetSecurityGroup.GroupId
 SubnetId:
 Fn::Select: [1, Ref: SubnetIds]

Create a security group to control access to the mount targets:6.

 MountTargetSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: EFS endpoint security group
 Tags:
 - Key: Name
 Value: MountTargetSecurityGroup
 VpcId:
 Ref: VpcId

Create a security group to access the mount target security group you created in7.
the previous step:

Storage and Content Delivery

[92]

 MountTargetAccessSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: EFS endpoint access security group
 Tags:
 - Key: Name
 Value: MountTargetAccessSecurityGroup
 VpcId:
 Ref: VpcId

Define the ingress and egress rules for the mount target security group:8.

 MountTargetIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 FromPort: 2049
 GroupId:
 Fn::GetAtt: MountTargetSecurityGroup.GroupId
 IpProtocol: tcp
 SourceSecurityGroupId:
 Fn::GetAtt: MountTargetAccessSecurityGroup.GroupId
 ToPort: 2049
 MountTargetEgress:
 Type: AWS::EC2::SecurityGroupEgress
 Properties:
 DestinationSecurityGroupId:
 Fn::GetAtt: MountTargetAccessSecurityGroup.GroupId
 FromPort: 2049
 GroupId:
 Fn::GetAtt: MountTargetSecurityGroup.GroupId
 IpProtocol: tcp
 ToPort: 2049

Storage and Content Delivery

[93]

Define the ingress and egress rules for the mount target access security group:9.

 MountTargetAccessIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 FromPort: 22
 GroupId:
 Fn::GetAtt: MountTargetAccessSecurityGroup.GroupId
 IpProtocol: tcp
 CidrIp: 0.0.0.0/0
 ToPort: 22
 MountTargetAccessEgress:
 Type: AWS::EC2::SecurityGroupEgress
 Properties:
 DestinationSecurityGroupId:
 Fn::GetAtt: MountTargetSecurityGroup.GroupId
 FromPort: 2049
 GroupId:
 Fn::GetAtt: MountTargetAccessSecurityGroup.GroupId
 IpProtocol: tcp
 ToPort: 2049

Save your template with the name 03-working-with-network-10.
storage.yaml.
Launch the CloudFormation stack with the following AWS CLI command,11.
substituting your own VPC ID and subnet IDs:

 aws cloudformation create-stack \
 --stack-name wwns1 \
 --template-body file://03-working-with-network-storage.yaml \
 --parameters \
 ParameterKey=VpcId,ParameterValue=<your-vpc-id> \
 ParameterKey=SubnetIds,ParameterValue="<subnet-id-1>\, \
 <subnet-id-2>"

Storage and Content Delivery

[94]

How it works...
Here is what the created resources will look like at the end of the recipe:

Working with network storage

We start by creating the standard CloudFormation template properties in step 1.

In step 2, you define the template's parameters that will be used when configuring the
resources.

Steps 3 and 4 are where the EFS resources are specified. They consist of an EFS filesystem
and mount targets in each of the AZs that will access it.

We then create the security groups in steps 5 and 6: one for the mount targets and one for
the instances that are allowed to connect to the mount targets.

As these two security groups contain two-way (or circular) references to each other, we
must define the rules between them in separate resources in steps 7 and 8.

In step 9, you save the template with a specific filename so that it can be referenced in the
command to launch the stack in step 10.

Storage and Content Delivery

[95]

There's more...
To confirm that your EFS filesystem, mount targets, and security groups are working, you
can also provision some client instances to connect to them. Add the following resources
and parameters to the template you have already created:

Add the following parameters to your top-level Parameters section to configure1.
your instances:

 MountPoint:
 Description: The path on disk to mount the EFS file system
 Type: String
 Default: /mnt/efs
 KeyName:
 Description: The SSH key pair allowed to connect to the client
 instance
 Type: AWS::EC2::KeyPair::KeyName

Add an AutoScalingGroup under the Resources section; regardless of which2.
AZ your servers are provisioned to, they will have access to the EFS filesystem
via the local mount point:

 AutoScalingGroup:
 Type: AWS::AutoScaling::AutoScalingGroup
 DependsOn: MountTargetA
 Properties:
 MinSize: 2
 MaxSize: 2
 LaunchConfigurationName:
 Ref: LaunchConfiguration
 Tags:
 - Key: Name
 Value:
 Fn::Sub: "${AWS::StackName} EFS Client"
 PropagateAtLaunch: true
 VPCZoneIdentifier:
 Ref: SubnetIds

Still in the Resources section, add a launch configuration:3.

 LaunchConfiguration:
 Type: AWS::AutoScaling::LaunchConfiguration
 DependsOn: FileSystem
 Properties:
 ImageId: ami-1e299d7e
 SecurityGroups:

Storage and Content Delivery

[96]

 - Ref: MountTargetAccessSecurityGroup
 InstanceType: t2.micro
 KeyName:
 Ref: KeyName
 UserData:
 Fn::Base64:
 Fn::Sub: |
 #!/bin/bash -xe
 mkdir -p ${MountPoint}
 echo 'Waiting for mount target DNS to propagate'
 sleep 90
 echo '${FileSystem}.efs.${AWS::Region}.amazonaws.com:/
 ${MountPoint} nfs4
 nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600,
 retrans=2 0 0' >>
 /etc/fstab
 mount -a\nchown ec2-user: ${MountPoint}\n"

Launch the CloudFormation stack with the following AWS CLI command,4.
substituting your own parameter values:

 aws cloudformation create-stack \
 --stack-name wwns1 \
 --template-body file://03-working-with-network-storage.yaml \
 --parameters \
 ParameterKey=VpcId,ParameterValue=<vpc-id> \
 ParameterKey=SubnetIds,ParameterValue='<subnet-id-1>\, \
 <subnet-id-1>' \
 ParameterKey=MountPoint,ParameterValue=<local-path-to-mount-efs> \
 ParameterKey=KeyName,ParameterValue=<existing-key-pair-name>

 Once the new stack is ready, you will be able to SSH to your instances and verify
 that they have mounted the EFS filesystem.

Backing up data for compliance
We work with a lot of companies (especially in the finance industry) that have strict rules
around the minimum time data needs to be kept for. This can become quite onerous and
expensive if you need to keep customer records for a minimum of 7 years, for example.

Using S3, Glacier, and life cycle rules, we can create a flexible long-term backup solution
while also automating the archiving and purging of backups and reducing costs.

We are also going to utilize versioning in order to mitigate the damaged caused by a file
being accidentally deleted or overwritten in our backup bucket.

Storage and Content Delivery

[97]

How to do it...
First, we need to define a few parameters:1.

ExpirationInDays: This is the maximum amount of time we want to
have our files kept in backup for. We've set a default for this value of
2,555 days (7 years).
TransitionToInfrequentAccessInDays: After a backup has been
copied to S3, we want to move it to the infrequently accessed class to
reduce our costs. This doesn't affect the durability of the backup, but it
does have a small impact on its availability. We'll set this to 30 days.
TransitionToGlacierInDays: After the backup has been kept in the
infrequently accessed class for a while, we want to move it to Glacier.
This again helps us reduce our costs at the expense of retrieval times. If
we need to fetch a backup from Glacier, the wait time will be
approximately 3-5 hours. We'll set the default for this to 60 days.
PreviousVersionsExpirationInDays: Given that we will have
versioning enabled on our bucket, we want to make sure old versions
of files aren't kept forever—we're using this feature only to mitigate
accidents. We'll set this value to 60 days, which gives us more than
enough time to identify and recover from an accidental deletion or
overwrite.
PreviousVersionsToInfrequentAccessInDays: Just like our other
backup files, we want to move our old versions to the infrequently
accessed class after a period of time in order to minimize costs. We'll
set this to 30 days:

 AWSTemplateFormatVersion: '2010-09-09'
 Parameters:
 ExpirationInDays:
 Description: The maximum amount of time to keep files
 for
 Type: Number
 Default: 2555
 TransitionToInfrequentAccessInDays:
 Description: How many days until files are moved to
 the Infrequent Access class
 Type: Number
 Default: 30
 TransitionToGlacierInDays:
 Description: How many days until files are moved
 to Glacier
 Type: Number

Storage and Content Delivery

[98]

 Default: 60
 PreviousVersionsExpirationInDays:
 Description: The maximum amount of time to keep previous
 versions of files for
 Type: Number
 Default: 60
 PreviousVersionsToInfrequentAccessInDays:
 Description: How many days until previous versions
 of files are moved to the Infrequent Access class
 Type: Number
 Default: 30

Next, we'll need to create the S3 bucket to store our backups in. Note that we're2.
omitting the name property for this bucket in order to avoid bucket name
conflicts and maximize region portability. We're also enabling versioning and
adding our life cycle rules from our previous Parameters:

 Resources:
 BackupBucket:
 Type: AWS::S3::Bucket
 Properties:
 VersioningConfiguration:
 Status: Enabled
 LifecycleConfiguration:
 Rules:
 - Status: Enabled
 ExpirationInDays:
 Ref: ExpirationInDays
 Transitions:
 - StorageClass: STANDARD_IA
 TransitionInDays:
 Ref: TransitionToInfrequentAccessInDays
 - StorageClass: GLACIER
 TransitionInDays:
 Ref: TransitionToGlacierInDays
 NoncurrentVersionExpirationInDays:
 Ref: PreviousVersionsExpirationInDays
 NoncurrentVersionTransitions:
 - StorageClass: STANDARD_IA
 TransitionInDays:
 Ref: PreviousVersionsToInfrequentAccessInDays

Finally, let's add an output so we know which bucket to store our backups in:3.

 Outputs:
 BackupBucket:
 Description: Bucket where backups are stored

Storage and Content Delivery

[99]

 Value:
 Ref: BackupBucket

How it works...
Go ahead and launch this CloudFormation stack. If you're happy with the default values for
the parameters, you don't need to provide them with the CLI command:

aws cloudformation create-stack \
 --stack-name backup-s3-glacier-1 \
 --template-body file://03-backing-up-data-for-compliance.yaml

Once the stack has been created, you'll be all set to start copying backups to the S3 bucket
and to start worrying less about your backups' life cycle and management. If you decide
that the expiry or transition times need to change after you've created the bucket, you can
do this by simply updating the parameters for the stack.

4
Using AWS Compute

In this chapter, we will cover:

Creating a key pair
Launching an instance
Attaching storage
Securely accessing private instances
Auto scaling an application server
Creating machine images
Creating security groups
Creating a load balancer

Introduction
Elastic Cloud Compute (EC2) is by far the most utilized and complex service in the AWS
catalogue. More than just virtual machines, EC2 provides a framework of sub-services to help
you secure and manage your instances elastically.

Creating a key pair
A key pair is used to access your instances via SSH. This is the quickest and easiest way to
access your instances.

Using AWS Compute

[101]

Getting ready
To perform this recipe, you must have your AWS CLI tool configured correctly.

How to do it...
Create the key pair, and save it to disk:1.

 aws ec2 create-key-pair \
 --key-name MyEC2KeyPair \
 --query 'KeyMaterial' \
 --output text > ec2keypair.pem

Change the permissions on the created file:2.

 chmod 600 ec2keypair.pem

How it works...
This call requests a new private key from EC2. The response is then parsed using a
JMESPath query, and the private key (in the KeyMaterial property) is saved to a new key
file with the .pem extension.

Finally, we change the permissions on the key file so that it cannot be read by other
users—this is required before SSH will allow you to use it.

Launching an instance
There will be scenarios—usually when testing and developing your infrastructure
code—when you need quick access to an instance. Creating it via the AWS CLI is the
quickest and most consistent way to create one-off instances.

There are other recipes in the book that will require a running instance. This recipe will get
you started.

Using AWS Compute

[102]

Getting ready
For this recipe, you must have an existing key pair.

In this recipe, we are launching an instance of AWS Linux using an AMI ID in the us-
east-1 region. If you are working in a different region, you will need to update your
image-id parameter.

You must have configured your AWS CLI tool with working credentials.

How to do it...
Run the following AWS CLI command, using your own key-pair name:

 aws ec2 run-instances \
 --image-id ami-9be6f38c \
 --instance-type t2.micro \
 --key-name <your-key-pair-name>

How it works...
While you can create an instance via the AWS web console, it involves many distracting
options. When developing and testing, the CLI tool is the best way to provision instances.

While the key-name argument is optional, you will not be able to connect to your instance
unless you have pre-configured some other way of logging in.

The t2.micro instance type used in this recipe is included in the AWS
free tier. You can run one micro instance per month for free during the
first 12 months of your usage. See https://aws.amazon.com/free for more
information.

As no VPC or security groups are specified, the instance will be launched in your account's
default VPC and security group. The default security group allows access from anywhere,
on all ports, and so is not suitable for long-lived instances. You can modify an instance's
security groups after it is launched, without stopping it.

https://aws.amazon.com/free

Using AWS Compute

[103]

There's more...
If you have created your own AMI, then you can change the image-id argument to quickly
launch your specific AMI.

You may also want to take note of the InstanceId value in the response from the API, as
you may need it for future commands.

See also
The Creating a key pair recipe
The Creating machine images recipe

Attaching storage
Ideally, you will have defined all your storage requirements up-front as code using a
service such as CloudFormation. However, sometimes that is not possible due to
application restrictions or changing requirements.

You can easily add additional storage to your instances while they are running by attaching
a new volume.

Getting ready
For this recipe, you will need the following:

A running instance's ID. It will start with i- followed by alphanumeric
characters.
The AZ the instance is running in. This looks like the region name with a letter
after it; for example, us-east-1a.

In this recipe, we are using an AWS Linux instance. If you are using a different operating
system, the steps to mount the volume will be different. We will be running an instance in
the AZ us-east-1a.

You must have configured your AWS CLI tool with working credentials.

Using AWS Compute

[104]

How to do it...
Create a volume:1.

 aws ec2 create-volume --availability-zone us-east-1a

Take note of the returned VolumeId in the response. It will start with
vol- followed by alphanumeric characters.

Attach the volume to the instance, using the volume ID noted in the last step and2.
the instance ID you started with:

 aws ec2 attach-volume \
 --volume-id <your-volume-id> \
 --instance-id <your-instance-id> \
 --device /dev/sdf

On the instance itself, mount the volume device:3.

 mount /dev/xvdf /mnt/volume

How it works...
In this recipe, we start by creating a volume. Volumes are created from snapshots. If you do
not specify a snapshot ID it uses a blank snapshot, and you get a blank volume.

While volumes are hosted redundantly, they are only hosted in a single AZ, so must be
provisioned in the same AZ the instance is running in.

The create-volume command returns a response that includes the newly created volume's
VolumeId. We then use this ID in the next step.

It can sometimes take a few seconds for a volume to become available. If
you are scripting these commands, use the aws ec2 wait command to
wait for the volume to become available.

Using AWS Compute

[105]

In step 3, we attach a volume to the instance. When attaching to an instance, you must
specify the name of the device that it will be presented to the operating system as.
Unfortunately, this does not guarantee what the device will appear as. In the case of AWS
Linux, /dev/sdf becomes /dev/xvdf.

Device naming is kernel-specific, so if you are using something other than
AWS Linux, the device name may be different. See
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming

.html for full details.

See also
The Launching an instance recipe
The Working with network storage recipe in Chapter 3, Storage and Content Delivery

Securely accessing private instances
Any instance or resource living in a private subnet in your VPC will be inaccessible from
the Internet. This makes good sense from a security perspective because it gives your
instances a higher level of protection.

Of course, if they can't be accessed from the Internet, then they're not going to be easy to
administer.

One common pattern is to use a VPN server as a single, highly controlled, entry point to
your private network. This is what we're going to show you in this recipe, as pictured in the
following diagram:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html

Using AWS Compute

[106]

Accessing private instances securely

Getting ready
We're going to use OpenVPN for this example. They provide a free (for up to two users)
AMI in the AWS marketplace, which has OpenVPN already installed and configured. You'll
need to accept the terms and conditions for using this AMI. You can do so by visiting the
AMI's marketplace page at https://aws.amazon.com/marketplace/pp/B00MI40CAE/.

https://aws.amazon.com/marketplace/pp/B00MI40CAE/

Using AWS Compute

[107]

You need to decide on a password, which will be your temporary admin password. We'll
feed this password into a CloudFormation template and then change it after we create our
stack.

You can use the default VPC for this example.

How to do it...
Create a new CloudFormation template and add the following Mappings. This is1.
a list of all the latest OpenVPN AMIs in each region. We're adding these to
maximize region portability for our template—you can omit the regions you have
no intention of using:

 Mappings:
 AWSRegion2AMI: # Latest OpenVPN AMI at time of publishing: 2.1.4
 us-east-1:
 AMI: ami-bc3566ab
 us-east-2:
 AMI: ami-10306a75
 us-west-2:
 AMI: ami-d3e743b3
 us-west-1:
 AMI: ami-4a02492a
 eu-west-1:
 AMI: ami-f53d7386
 eu-central-1:
 AMI: ami-ad1fe6c2
 ap-southeast-1:
 AMI: ami-a859ffcb
 ap-northeast-1:
 AMI: ami-e9da7c88
 ap-southeast-2:
 AMI: ami-89477aea
 sa-east-1:
 AMI: ami-0c069b60

Using AWS Compute

[108]

We now need to define some Parameters. Firstly we'll need to know which VPC2.
and subnet to deploy our VPN instance to. Note that you need to specify a public
subnet here, otherwise you won't be able to access your OpenVPN server:

 VpcId:
 Type: AWS::EC2::VPC::Id
 Description: VPC where load balancer and instance will launch
 SubnetId:
 Type: List<AWS::EC2::Subnet::Id>
 Description: Subnet where OpenVPN server will launch
 (pick at least 1)

We also need to define InstanceType and KeyName. These are the EC2 instance3.
class and SSH key pair to use to launch our OpenVPN server:

 InstanceType:
 Type: String
 Description: OpenVPN server instance type
 Default: m3.medium
 KeyName:
 Type: AWS::EC2::KeyPair::KeyName
 Description: EC2 KeyPair for SSH access

We need a parameter for AdminPassword. This is the temporary password which4.
will be given to the openvpn user (administrator) when the server starts up:

 AdminPassword:
 Type: String
 Description: Password for 'openvpn' user
 Default: openvpn
 NoEcho: true

The last parameter is the CIDR block, which we wish to allow to connect to our5.
VPN server. You may wish to lock this down to the public IP range of your
corporate network, for example:

 AllowAccessFromCIDR:
 Type: String
 Description: IP range/address to allow VPN connections from
 Default: "0.0.0.0/0"

Using AWS Compute

[109]

The first Resource we need to define is the security group our OpenVPN server6.
will live in. You'll also use this security group to allow access to other resources
in your network. Add it to your template as follows:

 VPNSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Inbound access to OpenVPN server
 VpcId: !Ref VpcId
 SecurityGroupIngress:
 - CidrIp: !Ref AllowAccessFromCIDR
 FromPort: 443
 IpProtocol: tcp
 ToPort: 443
 - CidrIp: !Ref AllowAccessFromCIDR
 FromPort: 22
 IpProtocol: tcp
 ToPort: 22
 - CidrIp: !Ref AllowAccessFromCIDR
 FromPort: 1194
 IpProtocol: udp
 ToPort: 1194

We can now define the actual OpenVPN instance itself. You'll notice that we are7.
explicitly configuring the network interface. This is required, because we want to
declare that this instance must get a public IP address (otherwise you won't be
able to access it). In the UserData, we declare some variables that the OpenVPN
software will pick up when it starts so that it can configure itself:

 OpenVPNInstance:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !FindInMap [AWSRegion2AMI, !Ref "AWS::Region", AMI]
 InstanceType: !Ref InstanceType
 KeyName: !Ref KeyName
 NetworkInterfaces:
 - AssociatePublicIpAddress: true
 DeviceIndex: "0"
 GroupSet:
 - !Ref VPNSecurityGroup
 SubnetId: !Select [0, Ref: SubnetId]
 Tags:
 - Key: Name
 Value: example-openvpn-server
 UserData:
 Fn::Base64: !Sub
 - |

Using AWS Compute

[110]

 public_hostname=openvpn
 admin_user=openvpn
 admin_pw=${admin_pw}
 reroute_gw=1
 reroute_dns=1
 - admin_pw: !Ref AdminPassword

Finally, we add some helpful Outputs:8.

 Outputs:
 OpenVPNAdministration:
 Value:
 Fn::Join:
 - ""
 - - https://
 - !GetAtt OpenVPNInstance.PublicIp
 - /admin/
 Description: Admin URL for OpenVPN server
 OpenVPNClientLogin:
 Value:
 Fn::Join:
 - ""
 - - https://
 - !GetAtt OpenVPNInstance.PublicIp
 - /
 Description: Client login URL for OpenVPN server
 OpenVPNServerIPAddress:
 Value: !GetAtt OpenVPNInstance.PublicIp
 Description: IP address for OpenVPN server

Go ahead and launch this stack in the CloudFormation web console, or via the9.
CLI, with the following command:

 aws cloudformation create-stack \
 --template-body file://04-securely-access-private-instances.yaml \
 --stack-name example-vpn \
 --parameters \
 ParameterKey=KeyName,ParameterValue=<key-pair-name> \
 ParameterKey=VpcId,ParameterValue=<your-vpc-id> \
 ParameterKey=SubnetId,ParameterValue=<your-public-subnet-id>

Using AWS Compute

[111]

Configuration
Once your stack is created, you'll want to change the password for the openvpn1.
user (administrator). Go to the admin control panel and do this now:
https://<ip-or-hostname-of-vpn-server>/admin. If your VPN server is
operating as expected you'll be greeted with a status page after logging in, as
pictured in the following screenshot:

Using AWS Compute

[112]

While you're there, you should create a non-administrator user account. This will
be the account you'll use to connect to the VPN. Add this account on the User
Permissions page as pictured in the following screenshot:

Using AWS Compute

[113]

Under Server Network Settings, in the Hostname or IP address field, enter the2.
hostname or IP address of the server. This step is important, and when you
download your OpenVPN config file from the server (next step), it will make
your life much easier if it has the correct hostname or IP address in it. The next
screenshot shows what you can expect to see on the Server Network Settings
page:

How it works...
You should now be able to connect to your VPN server. Go to the user login page and log in
with the credentials you gave to the previously mentioned non-administrator user:

https://<ip-or-hostname-of-vpn-server>/

After logging in, you will have the option to download the OpenVPN client with
configuration which is specific to your account. Alternatively, if you already have a VPN
client installed, you can just download the configuration on its own.

Using AWS Compute

[114]

There's more...
There are a couple of important points you'll need to keep in mind now that you are up and
running with an OpenVPN server:

If you need to SSH to the instance, you must connect with the username
openvpnas

To access your other instances, you'll need to allow connections from the VPN
security group created in this recipe

Auto scaling an application server
Auto scaling is a fundamental component of compute in the cloud. It provides not only the
ability to scale up and down in response to application load, but also redundancy, by
ensuring that capacity is always available. Even in the unlikely event of an AZ outage, the
auto scaling group will ensure that instances are available to run your application.

Auto scaling also allows you to pay for only the EC2 capacity you need, because
underutilized servers can be automatically de-provisioned.

Getting ready
You must supply two or more subnet IDs for this recipe to work.

The following example uses an AWS Linux AMI in the us-east-1 region. Update the
parameters as required if you are working in a different region.

How to do it...
Start by defining the template version and description:1.

 AWSTemplateFormatVersion: "2010-09-09"
 Description: Create an Auto Scaling Group

Add a Parameters section with the required parameters that will be used later2.
in the template:

 Parameters:
 SubnetIds:

Using AWS Compute

[115]

 Description: Subnet IDs where instances can be launched
 Type: List<AWS::EC2::Subnet::Id>

Still under the Parameters section, add the optional instance configuration3.
parameters:

 AmiId:
 Description: The application server's AMI ID
 Type: AWS::EC2::Image::Id
 Default: ami-9be6f38c # AWS Linux in us-east-1
 InstanceType:
 Description: The type of instance to launch
 Type: String
 Default: t2.micro

Still under the Parameters section, add the optional auto scaling group-4.
configuration parameters:

 MinSize:
 Description: Minimum number of instances in the group
 Type: Number
 Default: 1
 MaxSize:
 Description: Maximum number of instances in the group
 Type: Number
 Default: 4

 ThresholdCPUHigh:
 Description: Launch new instances when CPU utilization
 is over this threshold
 Type: Number
 Default: 60

 ThresholdCPULow:
 Description: Remove instances when CPU utilization
 is under this threshold
 Type: Number
 Default: 40

 ThresholdMinutes:
 Description: Launch new instances when over the CPU
 threshold for this many minutes
 Type: Number
 Default: 5

Using AWS Compute

[116]

Add a Resources section, and define the auto scaling group resource:5.

 Resources:
 AutoScalingGroup:
 Type: AWS::AutoScaling::AutoScalingGroup
 Properties:
 MinSize: !Ref MinSize
 MaxSize: !Ref MaxSize
 LaunchConfigurationName: !Ref LaunchConfiguration
 Tags:
 - Key: Name
 Value: !Sub "${AWS::StackName} server"
 PropagateAtLaunch: true
 VPCZoneIdentifier: !Ref SubnetIds

Still under the Resources section, define the launch configuration used by the6.
auto scaling group:

 LaunchConfiguration:
 Type: AWS::AutoScaling::LaunchConfiguration
 Properties:
 ImageId: !Ref AmiId
 InstanceType: !Ref InstanceType
 UserData:
 Fn::Base64: !Sub |
 #!/bin/bash -xe
 # This will be run on startup, launch your application here

Next, define two scaling policy resources—one to scale up and the other to scale7.
down:

 ScaleUpPolicy:
 Type: AWS::AutoScaling::ScalingPolicy
 Properties:
 AdjustmentType: ChangeInCapacity
 AutoScalingGroupName: !Ref AutoScalingGroup
 Cooldown: 60
 ScalingAdjustment: 1

 ScaleDownPolicy:
 Type: AWS::AutoScaling::ScalingPolicy
 Properties:
 AdjustmentType: ChangeInCapacity
 AutoScalingGroupName: !Ref AutoScalingGroup
 Cooldown: 60
 ScalingAdjustment: -1

Using AWS Compute

[117]

Define an alarm that will alert when the CPU goes over the ThresholdCPUHigh8.
parameter:

 CPUHighAlarm:
 Type: AWS::CloudWatch::Alarm
 Properties:
 ActionsEnabled: true
 AlarmActions:
 - !Ref ScaleUpPolicy
 AlarmDescription: Scale up on CPU load
 ComparisonOperator: GreaterThanThreshold
 Dimensions:
 - Name: AutoScalingGroupName
 Value: !Ref AutoScalingGroup
 EvaluationPeriods: !Ref ThresholdMinutes
 MetricName: CPUUtilization
 Namespace: AWS/EC2
 Period: 60
 Statistic: Average
 Threshold: !Ref ThresholdCPUHigh

Finally, define an alarm that will alert when the CPU goes under the9.
ThresholdCPULow parameter:

 CPULowAlarm:
 Type: AWS::CloudWatch::Alarm
 Properties:
 ActionsEnabled: true
 AlarmActions:
 - !Ref ScaleDownPolicy
 AlarmDescription: Scale down on CPU load
 ComparisonOperator: LessThanThreshold
 Dimensions:
 - Name: AutoScalingGroupName
 Value: !Ref AutoScalingGroup
 EvaluationPeriods: !Ref ThresholdMinutes
 MetricName: CPUUtilization
 Namespace: AWS/EC2
 Period: 60
 Statistic: Average
 Threshold: !Ref ThresholdCPULow

Save the template with the filename 04-auto-scaling-an-application-10.
server.yaml.

Using AWS Compute

[118]

Launch the template with the following AWS CLI command, supplying your11.
subnet IDs:

 aws cloudformation create-stack \
 --stack-name asg \
 --template-body file://04-auto-scaling-an-application-server.yaml \
 --parameters \
 ParameterKey=SubnetIds,ParameterValue='<subnet-id-1>\, \
 <subnet-id-2>'

How it works...
This example defines an auto scaling group and the dependent resources. These include the
following:

A launch configuration to use when launching new instances
Two scaling policies, one to scale the number of instances up, and an inverse
policy to scale back down
An alarm to alert when the CPU crosses a certain threshold, for a certain number
of minutes

The auto scaling group and launch-configuration resource objects in this example use
mostly default values. You will need to specify your own SecurityGroups and a KeyName
parameter in the LaunchConfiguration resource configuration if you want to be able to
connect to the instances (for example, via SSH).

AWS will automatically take care of spreading your instances evenly over the subnets you
have configured, so make sure they are in different AZs! When scaling down, the oldest
instances will be removed before the newer ones.

Scaling policies
The scaling policies detail how many instances to create or delete when they are triggered.
It also defines a Cooldown value, which helps prevent flapping servers—when servers are
created and deleted before they have finished starting and are useful.

While the scaling policies in this example use equal values, you might
want to change that so your application can scale up quickly, and scale
down slowly for the best user experience.

Using AWS Compute

[119]

Alarms
The CPUHighAlarm parameter will alert when the average CPU utilization goes over the
value set in the ThresholdCPUHigh parameter. This alert will be sent to the
ScaleUpPolicy resource provisioning more instances, which will bring the average CPU
utilization down across the whole auto scaling group. As the name suggests, the
CPULowAlarm parameter does the reverse when the average CPU utilization goes under the
ThresholdCPULow parameter.

This means that new instances will be launched until the CPU utilization across the auto
scaling group stabilizes somewhere between 40-60% (based on the default parameter
values), or the MaxSize of instances is reached.

It is very important to leave a gap between the high and low alarms
thresholds. If they are too close together, the alarms will not stabilize and
you will see instances created and destroyed almost continually.

The minimum charge for an instance is one hour, so creating and destroying them multiple
times in one hour may result in higher than expected charges.

Creating machine images
Creating or baking your own Amazon Machine Images (AMIs) is a key part of systems
administration in AWS. Having a pre-baked image helps you provision your servers faster,
easier, and more consistently than configuring it by hand.

Packer is the de facto standard tool that helps you make your own AMIs. By automating the
launch, configuration, and clean-up of your instances, it makes sure you get a repeatable
image every time.

In this recipe, we will create an image with the Apache web server pre-installed and
configured. While this is a simple example, it is also a very common use-case.

By baking-in your web server, you can scale up your web serving layer to dynamically
match the demands on your websites. Having the software already installed and configured
means you get the fastest and most reliable start-up possible.

Using AWS Compute

[120]

Getting ready
For this recipe, you must have the Packer tool available on your system. Download and
install Packer from the project's website https://www.packer.io/downloads.html.

How to do it...
Create a new Packer template file, and start by defining an amazon-ebs builder1.
in the builders section:

 "builders": [
 {
 "type": "amazon-ebs",
 "instance_type": "t2.micro",
 "region": "us-east-1",
 "source_ami": "ami-9be6f38c",
 "ssh_username": "ec2-user",
 "ami_name": "aws-linux-apache {{timestamp}}"
 }
],

The entire template file must be a valid JSON object. Remember to enclose
the sections in curly braces: { ... }.

Create a provisioners section, and include the following snippet to install and2.
activate Apache:

 "provisioners": [
 {
 "type": "shell",
 "inline": [
 "sudo yum install -y httpd",
 "sudo chkconfig httpd on"
]
 }
]

Save the file with a specific name, such as 04-creating-machine-3.
images.json.

https://www.packer.io/downloads.html

Using AWS Compute

[121]

Validate the configuration file you've created with the following packer4.
validate command:

 packer validate 04-creating-machine-images.json

When valid, build the AMI with the following command:5.

 packer build 04-creating-machine-images.json

Wait until the process is complete. While it is running, you will see an output6.
similar to the following:

Take note of the AMI ID returned by Packer so that you can use it when7.
launching instances in the future:

Using AWS Compute

[122]

How it works...
While this is a very simple recipe, there is a lot going on behind the scenes. This is why we
recommend you use Packer to create your machine images.

Template
In the builders section of the template, we define our build details.

We are using the most common type of AMI builder: amazon-ebs. There are other types of
AWS builders, for instance, storage-backed instance types.

Next, we define the type of instance to use when baking.

Make sure that you can often decrease the time it takes to bake your
instance by using a larger instance size. Remember that the minimum
price paid for an instance is one hour of billable time.

Using AWS Compute

[123]

The source_ami property in this recipe is an AWS Linux AMI ID in the region we have
specified. The ssh_username allows you to set the username used to connect and run
provisioners on the instance. This will be determined by your operating system, which in
our case is ec2-user.

Finally, the ami_name field includes the built-in Packer variable {{timestamp}}. This
ensures the AMI you create will always have a unique name.

Validate the template
The packer validate command is a quick way to ensure your template is free of syntax
errors before you launch any instances.

Build the AMI
Once you have created and validated your template, the packer build command does the
following for you:

Creates a one-time key pair for SSH access to the instance
Creates a dedicated security group to control access to the instance
Launches an instance
Waits until SSH is ready to receive connections
Runs the provisioner steps on the instance
Stops the instance
Generates an AMI from the stopped instance
Terminates the instance

Check the Packer documentation for more provisioners and functionality
at https://www.packer.io/docs/.

There's more...
While Packer makes the administration of images much easier on AWS, there are still a few
things to watch out for.

https://www.packer.io/docs/

Using AWS Compute

[124]

Debugging
Obviously, with so many steps being automated for you, there are many things that can
potentially go wrong. Packer gives you a few different ways to debug issues with your
builds.

One of the most useful arguments to use with Packer is the -debug flag. This will force you
to manually confirm each step before it takes place. Doing this makes it easy to work out
exactly which step in the command is failing, which in turn usually makes it obvious what
needs to be changed.

Another useful thing to do is to raise the level of logging output during a Packer command.
You can do this by setting the PACKER_LOG variable to true. The easiest way to do this is
with PACKER_LOG=1 at the beginning of your Packer command line. This will mean you get
a lot more information printed to the console (for example, SSH logs, AWS API calls, and so
on) during the command. You may even want to run with this level of logging normally in
your builds, for auditing purposes.

Orphaned resources
Packer does a great job of managing and cleaning up the resource it uses, but it can only do
that while it is running.

If your Packer job aborts for any reason (most likely network issues) then there may be
some resources left orphaned, or unmanaged. It is good practice to check for any Packer
instances (they will have Packer in their name), and stop them if there are no active Packer
jobs running.

You may also need to clean up any leftover key pairs and security groups, but this is less of
an issue as there is no cost associated with them (unlike instances).

Deregistering AMIs
As it becomes easier to create AMIs, you may find you end up with more than you need!

AMIs are made up of EC2 snapshots, which are stored in S3. There is a cost associated with
storing snapshots, so you will want to clean them up periodically. Given the size of most
AMIs (usually a few GBs), it is unlikely to be one of your major costs.

An even greater cost is the administrative overhead of managing too many AMIs. As your
images improve and fixes are applied (especially security fixes), you may want to prevent
people from using them.

Using AWS Compute

[125]

To remove an AMI, you must first deregister it, and then remove the underlying snapshots.

Make sure you do not deregister AMIs that are currently in use. For
example, an auto scaling group that references a deregistered AMI will fail
to launch new instances!

You can easily deregister snapshots through the web console or using the AWS CLI tool.

Once an AMI is no longer registered, you can remove the associated snapshots. Packer
automatically adds the AMI ID to the snapshots' description. By searching your snapshots
for the deregistered AMI ID, you can find which ones need to be deleted.

You will not be able to delete snapshots if the AMI has not been deregistered, or if the
deregistration is still taking place (it can take a few minutes).

Other platforms
It is also worth noting that Packer can build for more platforms that just AWS. You can also
build images for VMWare, Docker, and many others.

This means you could build almost exactly the same machine image locally (for example,
using Docker) as you do in AWS. This makes it much more convenient when setting up
local development environments, for example.

Check the builders section of the Packer documentation for details.

Creating security groups
AWS describes security groups as virtual firewalls. While this analogy helps newcomers to
the EC2 platform understand their purpose and function, it's probably more accurate to
describe them as a firewall-like method of authorizing traffic. They don't offer all the
functionality you'd find in a traditional firewall, but this simplification also makes them
extremely powerful, particularly when combined with Infrastructure as Code and modern
SDLC practices.

We're going to go through a basic scenario involving a web server and load balancer. We
want the load balancer to respond to HTTP requests from everywhere, and we want to
isolate the web server from everything except the load balancer.

Using AWS Compute

[126]

Getting ready
Before we get started there's a small list of things you'll need to have ready:

AmiId This is the ID of an AMI in your region. For this recipe, we'd recommend
using an AWS Linux AMI because our instance will attempt to run some yum
commands on startup.
VPCID: This is the ID of the VPC you wish to launch the EC2 server into.
SubnetIDs: These are the subnets which our EC2 instance can launch in.

How to do it...
Open up your text editor and create a new CloudFormation template. We're1.
going to start by adding a few Parameters as follows:

 AWSTemplateFormatVersion: '2010-09-09'
 Parameters:
 AmiId:
 Type: AWS::EC2::AMI::Id
 Description: AMI ID to launch instances from
 VPCID:
 Type: AWS::EC2::VPC::Id
 Description: VPC where load balancer and instance will launch
 SubnetIDs:
 Type: List<AWS::EC2::Subnet::Id>
 Description: Subnets where load balancer and instance will launch
 (pick at least 2)

Let's take a look at a security group we'll apply to a public load balancer:2.

 ExampleELBSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Security Group for example ELB
 SecurityGroupIngress:
 - IpProtocol: tcp
 CidrIp: 0.0.0.0/0
 FromPort: 80
 ToPort: 80

Using AWS Compute

[127]

Anything which resides in this security group will allow inbound TCP
connections on port 80 from anywhere (0.0.0.0/0). Note that a security group
can contain more than one rule; we'd almost certainly want to also allow HTTPS
(443), but we've left it out to simplify this recipe.

Now let's look at a security group for a web server sitting behind our load3.
balancer:

 ExampleEC2InstanceSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Security Group for example Instance
 SecurityGroupIngress:
 - IpProtocol: tcp
 SourceSecurityGroupName:
 Ref: ExampleELBSecurityGroup
 FromPort: 80
 ToPort: 80

Here you can see we are not specifying a source IP range. Instead, we're
specifying a source security group, which we will accept connections from. In this
case, we're saying that we want to allow anything from our ELB security group to
connect to anything in our EC2 instance security group on port 80.
Since this is the only rule we're specifying, our web server will not accept
connections from anywhere except our load balancer, to port 80 or otherwise. Our
web server isn't wide open to the Internet, and it is even isolated from other
instances in our VPC

Remember that multiple instances can reside in a security group. In a
scenario where you have multiple web servers attached to this load
balancer it would be unnecessary, inefficient, and somewhat of an anti-
pattern to create a new security group for each web server. Given that all
web servers attached to this load balancer would be serving the same role
or function, it makes sense to apply the same security group to them.

This is where the power of security groups really comes in. If an EC2 instance is
serving multiple roles—let's say you have an outbound HTTP proxy server in
your VPC which you also want to act as an SMTP relay—then you can simply
apply multiple security groups to it.

Using AWS Compute

[128]

Next, we need to add our load balancer. This is probably the most basic load4.
balancer configuration you'll come across. The following code will give you a
load balancer, a listener and a target group containing our EC2 instance.

 ExampleLoadBalancer:
 Type: AWS::ElasticLoadBalancingV2::LoadBalancer
 Properties:
 Subnets:
 - Fn::Select: [0, Ref: SubnetIDs]
 - Fn::Select: [1, Ref: SubnetIDs]
 SecurityGroups:
 - Fn::GetAtt: ExampleELBSecurityGroup.GroupId
 ExampleListener:
 Type: AWS::ElasticLoadBalancingV2::Listener
 Properties:
 LoadBalancerArn:
 Ref: ExampleLoadBalancer
 DefaultActions:
 - Type: forward
 TargetGroupArn:
 Ref: ExampleTargetGroup
 Port: 80
 Protocol: HTTP
 ExampleTargetGroup:
 Type: AWS::ElasticLoadBalancingV2::TargetGroup
 Properties:
 Port: 80
 Protocol: HTTP
 VpcId:
 Ref: VPCID
 Targets:
 - Id:
 Ref: ExampleEC2Instance

The last resource we'll add to our template is an EC2 server. This server will5.
install and start nginx when it boots.

 ExampleEC2Instance:
 Type: AWS::EC2::Instance
 Properties:
 InstanceType: t2.nano
 UserData:
 Fn::Base64:
 Fn::Sub: |
 #!/bin/bash -ex
 yum install -y nginx
 service nginx start

Using AWS Compute

[129]

 exit 0
 ImageId:
 Ref: AmiId
 SecurityGroupIds:
 - Fn::GetAtt: ExampleEC2InstanceSecurityGroup.GroupId
 SubnetId:
 Fn::Select: [0, Ref: SubnetIDs]

Lastly, we're going to add some Outputs to the template to make it a little more6.
convenient to use our ELB and EC2 instance after the stack is created.

 Outputs:
 ExampleEC2InstanceHostname:
 Value:
 Fn::GetAtt: [ExampleEC2Instance, PublicDnsName]
 ExampleELBURL:
 Value:
 Fn::Join:
 - ''
 - ['http://', { 'Fn::GetAtt': [ExampleLoadBalancer,
 DNSName] }, '/']

Go ahead and launch this template using the CloudFormation web console or the7.
AWS CLI.

There's more...
You'll eventually run into circular dependency issues when configuring security groups
using CloudFormation. Let's say you want all servers in our
ExampleEC2InstanceSecurityGroup to be able to access each other on port 22 (SSH). In
order to achieve this, you would need to add this rule as the separate resource type
AWS::EC2::SecurityGroupIngress. This is because a security group can't refer to itself
in CloudFormation when it is yet to be created. This is what the extra resource type looks
like:

 ExampleEC2InstanceIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 IpProtocol: tcp
 SourceSecurityGroupName:
 Ref: ExampleEC2InstanceSecurityGroup
 GroupName:
 Ref: ExampleEC2InstanceSecurityGroup
 FromPort: 22
 ToPort: 22

Using AWS Compute

[130]

Differences from traditional firewalls
Security groups can't be used to explicitly block traffic. Only rules of a permissive
kind can be added; deny style rules are not supported. Essentially, all inbound
traffic is denied unless you explicitly allow it.
Your rules also may not refer to source ports; only destination ports are
supported.
When security groups are created, they will contain a rule which allows all
outbound connections. If you remove this rule, new outbound connections will
be dropped. It's a common pattern to leave this rule in place and filter all your
traffic using inbound rules only.
If you do replace the default outbound rule, it's important to note that only new
outbound connections will be filtered. Any outbound traffic being sent in
response to an inbound connection will still be allowed. This is because security
groups are stateful.
Unlike security groups, network ACLs are not stateful and do support DENY
rules. You can use them as a complementary layer of security inside your VPC,
especially if you need to control traffic flow between subnets.

Creating a load balancer
AWS offers two kinds of load balancers:

Classic load balancer
Application load balancer

We're going to focus on the application load balancer. It's effectively an upgraded, second
generation of the ELB service, and it offers a lot more functionality than the classic load
balancer. HTTP/2 and WebSockets are supported natively, for example. The hourly rate also
happens to be cheaper.

Application load balancers do not support layer-4 load balancing. For this
kind of functionality, you'll need to use a classic load balancer.

Using AWS Compute

[131]

How to do it...
Open up your text editor and create a new CloudFormation template. We're1.
going to require a VPC ID and some subnet IDs as Parameters. Add them to
your template like this:

 AWSTemplateFormatVersion: '2010-09-09'
 Parameters:
 VPCID:
 Type: AWS::EC2::VPC::Id
 Description: VPC where load balancer and instance will launch
 SubnetIDs:
 Type: List<AWS::EC2::Subnet::Id>
 Description: Subnets where load balancer and instance will launch
 (pick at least 2)

Next we need to add some Mappings of ELB account IDs. These will make it2.
easier for us to give the load balancer permission to write logs to an S3 bucket.
Your mappings should look like this:

You can find the complete list of ELB account IDs here h t t p ://d o c s . a w s .
a m a z o n . c o m /e l a s t i c l o a d b a l a n c i n g /l a t e s t /c l a s s i c /e n a b l e - a c c e s s - l

o g s . h t m l #a t t a c h - b u c k e t - p o l i c y .

 Mappings:
 ELBAccountMap:
 us-east-1:
 ELBAccountID: 127311923021
 ap-southeast-2:
 ELBAccountID: 783225319266

We can now start adding Resources to our template. First we're going to create3.
an S3 bucket and bucket policy for storing our load balancer logs. In order to
make this template portable, we'll omit a bucket name, but for convenience we'll
include the bucket name in our outputs so that CloudFormation will echo the
name back to us.

 Resources:
 ExampleLogBucket:
 Type: AWS::S3::Bucket
 ExampleBucketPolicy:
 Type: AWS::S3::BucketPolicy
 Properties:
 Bucket:

http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html#attach-bucket-policy

Using AWS Compute

[132]

 Ref: ExampleLogBucket
 PolicyDocument:
 Statement:
 -
 Action:
 - "s3:PutObject"
 Effect: "Allow"
 Resource:
 Fn::Join:
 - ""
 -
 - "arn:aws:s3:::"
 - Ref: ExampleLogBucket
 - "/*"
 Principal:
 AWS:
 Fn::FindInMap: [ELBAccountMap, Ref: "AWS::Region",
 ELBAccountID]

Next, we need to create a security group for our load balancer to reside in. This4.
security group will allow inbound connections to port 80 (HTTP). To simplify
this recipe, we'll leave out port 443 (HTTPS), but we'll briefly cover how to add
this functionality later in this section. Since we're adding a public load balancer,
we want to allow connections to it from everywhere (0.0.0.0/0). This is what
our security group looks like:

 ExampleELBSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Security Group for example ELB
 SecurityGroupIngress:
 -
 IpProtocol: tcp
 CidrIp: 0.0.0.0/0
 FromPort: 80
 ToPort: 80

We now need to define a target group. Upon completion of this recipe, you can5.
go ahead and register your instances in this group so that HTTP requests will be
forwarded to it. Alternatively, you can attach the target group to an auto scaling
group and AWS will take care of the instance registration and de-registration for
you.

Using AWS Compute

[133]

The target group is where we specify the health checks our load balancer should6.
perform against the target instances. This health check is necessary to determine
if a registered instance should receive traffic. The example provided with this
recipe includes these health-check parameters with the values all set to their
defaults. Go ahead and tweak these to suit your needs, or, optionally, remove
them if the defaults work for you.

 ExampleTargetGroup:
 Type: AWS::ElasticLoadBalancingV2::TargetGroup
 Properties:
 Port: 80
 Protocol: HTTP
 HealthCheckIntervalSeconds: 30
 HealthCheckProtocol: HTTP
 HealthCheckPort: 80
 HealthCheckPath: /
 HealthCheckTimeoutSeconds: 5
 HealthyThresholdCount: 5
 UnhealthyThresholdCount: 2
 Matcher:
 HttpCode: '200'
 VpcId:
 Ref: VPCID

We need to define at least one listener to be added to our load balancer. A listener7.
will listen for incoming requests to the load balancer on the port and protocol we
configure for it. Requests matching the port and protocol will be forwarded
through to our target group.

The configuration of our listener is going to be reasonably simple. We're listening
for HTTP requests on port 80. We're also setting up a default action for this
listener, which will forward our requests to the target group we've defined before.
There is a limit of 10 listeners per load balancer.

Currently, AWS only supports one action: forward.

 ExampleListener:
 Type: AWS::ElasticLoadBalancingV2::Listener
 Properties:
 LoadBalancerArn:
 Ref: ExampleLoadBalancer
 DefaultActions:

Using AWS Compute

[134]

 - Type: forward
 TargetGroupArn:
 Ref: ExampleTargetGroup
 Port: 80
 Protocol: HTTP

Finally, now that we have all Resources we need, we can go ahead and set up8.
our load balancer. We'll need to define at least two subnets for it to live in—these
are included as Parameters in our example template:

 ExampleLoadBalancer:
 Type: AWS::ElasticLoadBalancingV2::LoadBalancer
 Properties:
 LoadBalancerAttributes:
 - Key: access_logs.s3.enabled
 Value: true
 - Key: access_logs.s3.bucket
 Value:
 Ref: ExampleLogBucket
 - Key: idle_timeout.timeout_seconds
 Value: 60
 Scheme: internet-facing
 Subnets:
 - Fn::Select: [0, Ref: SubnetIDs]
 - Fn::Select: [1, Ref: SubnetIDs]
 SecurityGroups:
 - Fn::GetAtt: ExampleELBSecurityGroup.GroupId

Lastly, we're going to add some Outputs to our template for convenience. We're9.
particularly interested in the name of the S3 bucket we created and the URL of
the load balancer.

 Outputs:
 ExampleELBURL:
 Value:
 Fn::Join:
 - ''
 - ['http://', { 'Fn::GetAtt': [ExampleLoadBalancer,
 DNSName] }, '/']
 ExampleLogBucket:
 Value:
 Ref: ExampleLogBucket

Using AWS Compute

[135]

How it works...
As you can see, we're applying a logging configuration which points to the S3 bucket we've
created. We're configuring this load balancer to be Internet-facing, with an idle timeout of
60 seconds (the default).

All load balancers are Internet-facing by default, so it's not strictly necessary to define a
Scheme in our example; however, it can be handy to include this anyway. This is especially
the case if your CloudFormation template contains a mix of public and private load
balancers.

If you specify a logging configuration but the load balancer can't access the
S3 bucket, your CloudFormation stack will fail to complete.

Private ELBs are not Internet-facing and are available only to resources which live inside
your VPC.

That's it! You now have a working application load balancer configured to ship logs to an
S3 bucket.

There's more...
Load balancers on AWS are highly configurable and there are many options available to
you. Here are some of the more frequent ELB options you'll encounter:

HTTPS/SSL
If you wish to accept HTTPS requests, you'll need to configure an additional listener. It will
look something like the following:

 ExampleHTTPSListener:
 Type: AWS::ElasticLoadBalancingV2::Listener
 Properties:
 Certificates:
 - CertificateArn:
 arn:aws:acm:ap-southeast-2:123456789012:
 certificate/12345678-1234-1234-1234-123456789012
 LoadBalancerArn:
 Ref: ExampleLoadBalancer
 DefaultActions:
 - Type: forward

Using AWS Compute

[136]

 TargetGroupArn:
 Ref: ExampleTargetGroup
 Port: 443
 Protocol: HTTPS

The listener will need to reference a valid Amazon Resource Name (ARN) for the certificate
you wish to use. It's really easy to have AWS Certificate Manager create a certificate for you,
but it does require validation of the domain name you're generating the certificate for. You
can, of course, bring your own certificate if you wish. You'll need to import it in to AWS
Certificate Manager before you can use it with your ELB (or CloudFront distribution).

Unless you have specific requirements around ciphers, a good starting approach is to not
define an SSL Policy and let AWS choose what is currently best of breed.

Path-based routing
Once you are comfortable with ELB configuration, you can start to experiment with path-
based routing. In a nutshell, it provides a way to inspect a request and proxy it to different
targets based on the path requested.

One common scenario you might encounter is needing to route requests for /blog to a
different set of servers running WordPress, instead of to your main server pool, which is
running your Ruby on Rails application.

5
Management Tools

In this chapter, we will cover:

Auditing your AWS account
Recommendations with Trusted Advisor
Creating e-mail alarms
Publishing custom metrics in CloudWatch
Creating monitoring dashboards
Creating a budget
Feeding log files into CloudWatch logs

Introduction
As with all administration, monitoring and alerting is a critical part of using AWS-based
infrastructure. If anything, due to the ephemeral nature of cloud resources, keeping track
and measuring your usage is even more important than when using on-premises systems.

Management Tools

[138]

Auditing your AWS account
We're now going to show you how to set up CloudTrail in your AWS account. Once
CloudTrail has been enabled, it will start to record all of the API calls made in your account
to the AWS service and then deliver them to you as log files in an S3 bucket.
When we talk about API calls we mean things like:

Actions performed in the AWS console.
Calls made to AWS APIs using the CLI or SDKs.
Calls made on your behalf by AWS services. Think CloudFormation or the auto
scaling service.

Each entry in the log will contain useful information, such as:

The service that was called
The action that was requested
The parameters sent with the request
The response that was returned by AWS
The identity of the caller (including IP address)
The date and time of the request

How to do it...
Create a new CloudFormation template file; we're going to define the following1.
Resources:

An S3 bucket for our CloudTrail log files to be stored in
A policy for our S3 bucket that allows the CloudTrail service to write to
our bucket
A CloudTrail trail

Define an S3 bucket like so. We don't need to give it a name; we'll add the bucket2.
name to the list of Outputs later:

 ExampleTrailBucket:
 Type: AWS::S3::Bucket

Management Tools

[139]

Next, we need to define a policy for our bucket. This section is a little wordy so3.
you may prefer to get this from the code samples instead. This policy essentially
allows CloudTrail to do two things to our bucket: s3:GetBucketAcl and
s3:PutObject.

 ExampleBucketPolicy:
 Type: AWS::S3::BucketPolicy
 Properties:
 Bucket: !Ref ExampleTrailBucket
 PolicyDocument:
 Statement:
 - Sid: AWSCloudTrailAclCheck20150319
 Effect: Allow
 Principal:
 Service: cloudtrail.amazonaws.com
 Action: s3:GetBucketAcl
 Resource: !Join
 - ""
 -
 - "arn:aws:s3:::"
 - !Ref ExampleTrailBucket
 - Sid: AWSCloudTrailWrite20150319
 Effect: Allow
 Principal:
 Service: cloudtrail.amazonaws.com
 Action: s3:PutObject
 Resource: !Join
 - ""
 -
 - "arn:aws:s3:::"
 - !Ref ExampleTrailBucket
 - "/AWSLogs/"
 - !Ref AWS::AccountId
 - "/*"
 Condition:
 StringEquals:
 s3:x-amz-acl: bucket-owner-full-control

Now we can set up our trail.4.

One thing to note here is that we use DependsOn to make CloudFormation
create this trail after it has created the S3 bucket and policy. If you don't do
this you'll likely encounter an error when you create the stack because
CloudTrail won't be able to access the bucket.

Management Tools

[140]

Add the Trail to your template like so:5.

 ExampleTrail:
 Type: AWS::CloudTrail::Trail
 Properties:
 EnableLogFileValidation: true
 IncludeGlobalServiceEvents: true
 IsLogging: true
 IsMultiRegionTrail: true
 S3BucketName: !Ref ExampleTrailBucket
 DependsOn:
 - ExampleTrailBucket
 - ExampleBucketPolicy

Finally, we're going to output the name of the S3 bucket where our CloudTrail6.
logs will be stored:

 Outputs:
 ExampleBucketName:
 Value: !Ref ExampleTrailBucket
 Description: Bucket where CloudTrail logs will be stored

You can go ahead and run your CloudFormation stack using the following7.
command:

 aws cloudformation create-stack \
 --template-body file://05-auditing-your-aws-account.yaml \
 --stack-name example-cloudtrail

How it works...
This template will set up CloudTrail with the following configuration:

CloudTrail will be turned on for all regions in your account. This is a sensible
place to start because it gives you visibility over where your AWS resources are
being created. Even if you are the sole user of your AWS account it can be handy
to know if you are making API calls to other regions by mistake (it's easy to do).
When you create a multi region trail, new regions will automatically be included
when they come online with no additional effort on your part.
Global service events will also be logged. Again this is a sensible default because
it includes services that aren't region-specific. CloudFront and IAM are two
examples of AWS services that aren't region-specific.

Management Tools

[141]

Log file validation is turned on. With this feature enabled, CloudTrail will deliver
a digest file on an hourly basis that you can use to determine if your CloudTrail
logs have been tampered with. CloudTrail uses SHA-256 for hashing and signing
(RSA). The AWS CLI can be used to perform ad hoc validation of CloudTrail logs.

For a quick view of your CloudTrial logs, with some basic search and filter functionality,
you can head to the AWS web console:

CloudTrail web console

There's more...
Log files are encrypted using server side encryption in S3. This encryption is
transparent to you, but you can opt to encrypt these files with your own
customer master key (CMK) if you wish.
API calls are logged by CloudTrail in under 15 minutes.
Logs are shipping to your S3 bucket every five minutes.
It's possible to aggregate CloudTrail events across many accounts into a single
bucket. This is a pattern often used to log AWS activity into a SecOps or similar
account for auditing.

Management Tools

[142]

Logging aside, CloudTrail keeps your API activity for seven days.
You can create more than one trail. You might consider creating a trail for your
developers that is separate from the trail consumed by security.
If a CloudFormation stack creates an S3 bucket and that S3 bucket has objects in it
the delete operation will fail if and when you choose to delete the stack. You can
manually delete the S3 bucket in the S3 web console if you wish to work around
this.

Recommendations with Trusted Advisor
Trusted Advisor covers four main areas and it is designed to give you some guidance
around what are considered best practices for your cloud deployment. The areas covered
are:

Cost Optimization
Performance
Security
Fault Tolerance

It's available to everyone and free to use—with one fairly large catch. Unless you are paying
for Business or Enterprise level support with AWS you only get access to four checks. At the
time of publishing there are 55 possible checks.

How to do it...
The good news is you don't need to do anything at all to turn on Trusted Advisor. It's
automatically enabled when your AWS account is created and will continue to update for
the lifetime of your account.

Go ahead and navigate to the Trusted Advisor section of the AWS web console.

Management Tools

[143]

How it works...
The four checks provided for free with this service are:

Unrestricted ports: This is a check on the highest risk ports in your security
groups. They'll be flagged if they're open to everyone (0.0.0.0/0).
IAM usage: This is a fairly rudimentary check. If there isn't at least one IAM user
in your account this check won't pass. It's considered good practice to not use
your root login credentials for your AWS account and instead create IAM users
with least privilege access.
MFA on root account: This is also a fairly rudimentary check. You need to have
MFA enabled for your root login in order for this check to pass. It's obviously a
good idea to enable MFA for your IAM users too.
Service limits: This one is quite handy: if you're approaching 80% of your service
limits, this check won't pass. For example, it's nice to know if you're about to hit
the cap of CloudFormation stacks or EC2 instances before you attempt to create
them.

Even though there's only four checks here, these are some of the more useful ones so we'd
encourage you to pay attention to them.

The console uses a color scheme to denote the status of each check:

Red: It's recommended that you take action to remedy this check
Yellow: This check requires investigation and possible remediation
Green: This check is passing and needs no attention

Management Tools

[144]

Visit the Preferences page in the Trusted Advisor web console if you'd
like to have a weekly report e-mailed to you.

Trusted Advisor console

There's more...
As well as opening up the entire suite of Trusted Advisor checks, a Business or Enterprise
level support arrangement gives you access to the following:

Notifications: You are able to have notifications delivered to you at a higher
frequency using a number of delivery methods. Since Trusted Advisor is an
available source in CloudWatch Events you'll be able to create notifications that
can be handled by SNS (e-mail, push, SMS) or even notifications that will trigger
Lambda functions.

Management Tools

[145]

API access: You'll have access to a number of Trusted Advisor API methods such
as DescribeTrustedAdvisorCheckResult and
DescribeTrustedAdvisorCheckSummaries. You can use these to integrate the
results from checks into your own dashboards or monitoring systems. You'll also
be able to use the APIs to refresh Trusted Advisor checks (after you've taken
corrective action on them, for example).
Exclusion: You can selectively mute checks that are failing. You'll sometimes
want to do this for things such as RDS instances in your development
environments that aren't in multi-AZ mode or don't have backups enabled.

Finally, some of the more useful checks we see for our Business and Enterprise level
support customers are:

Reserved Instances: A nice cost optimization if you have a reasonably static
workload.
Unassociated Elastic IPs: If IP addresses are not associated with a network
interface (on an EC2 instance for example) you will still be charged for them. Also
if there are unassociated IPs floating around, that is usually a sign that they are
being allocated manually instead of with CloudFormation. Remember that the
goal here is for more automation, not less.
Idle load balancers: Again, these cost money and are often easily orphaned in
low automation environments.
S3 bucket permissions: It's not always obvious if the permissions on an S3
bucket have been misconfigured. This check helps you avoid unintentionally
leaking data.

Creating e-mail alarms
While e-mail alarms may not be the most scalable of all alarms (due to the amount of e-mail
most people get), they are the easiest to integrate—almost everyone has an e-mail address!

This recipe uses two AWS services:

CloudWatch (CW)
Simple Notification Service (SNS)

As you will often want to create alarms for metrics after viewing them through the
CloudWatch dashboard, this recipe will use the console to create the alarms.

Management Tools

[146]

How to do it...
In the CloudWatch console, go to the Alarms section:1.

Management Tools

[147]

Click Create Alarm to start the wizard:2.

Management Tools

[148]

Select the metric you are interested in alerting on. In this case, we will choose By3.
Function Name under Lambda Metrics:

Management Tools

[149]

Select the specific metric. You can filter by any of the values in the table. In this4.
case, we will select Errors and click Next:

Management Tools

[150]

Define the alarm, giving at least a name and a threshold. In this case, we will alert5.
if there are ever any errors (such as > 0):

Management Tools

[151]

In the Actions section, create a new list by giving the e-mail address you want to6.
be notified on of a breach, and a topic name (in this example, we use EmailMe),
and then click Create Alarm:

Management Tools

[152]

You will be asked to confirm the e-mail address, and no notifications will be7.
given until it is verified.

The confirmation e-mail will look like this:8.

Management Tools

[153]

Once you have clicked on the Confirm subscription link in the e-mail, you will9.
see a confirmation message as follows:

Back in the console the status will update, showing that you have successfully10.
confirmed your subscription:

Management Tools

[154]

You will then see your newly created alarm in the console, and can view its status11.
and history:

In the SNS console, you can see the topic that was created for you as follows:12.

Management Tools

[155]

How it works...
While we normally prefer the CLI (or CloudFormation) for creating AWS resources the
wizard for creating alarms does a lot of work for you, so it is a good place to start. Once you
know what kinds of alarms you are interested in, you can automate them.

The CloudWatch console is a great place to keep an eye on the performance of your
resources. Often when looking at the metrics you might find a scenario that you would
want to be notified of, and quickly create an alarm on it.

While e-mail is probably the easiest way to get started with alarms, it
doesn't scale all that well (Do you really want more e-mail?). For very
important metrics you might want a CloudWatch dashboard instead, or a
different notification protocol/target.

We start by selecting the metric we are interested in; in this case, it is errors from the
example-lambda-function, but the process would work the same regardless of the metric
you select.

Management Tools

[156]

You must define a name for the alarm, and you can optionally create a description. One of
the most important parts of the alarm is how you define the threshold that will trigger it.
You can choose not only the value and comparison operator used (for example, greater than
(>), less than (<), greater than or equal to (>=), and so on), but also the number of failing data
points that must occur before the alarm is triggered. This can stop you being alerted
unnecessarily for temporary spikes in metric values. In this scenario we want to know if
there are any errors, so we set the value to 1.

On the right-hand side you can define the check period and the statistic used (for example,
Average, Maximum, Minimum, and so on). You can also see the recent history of the
selected metric in the top-right corner. The red line on the graph is where the currently
defined threshold will sit, so you can quickly see if the alarm would have been triggered.

In the Actions section of the alarm, you define what action will be taken when triggered.
While you can select an existing SNS topic, we will define a new one by clicking on New
list. You are then prompted for the details of the new topic; you must give both a name and
an e-mail address to subscribe to the topic.

When you click Create Alarm, you will see the status of the subscription. After receiving
the e-mail and clicking on the confirmation link, the status will automatically update. It
doesn't matter if you navigate away from the window before you confirm the subscription.
Just remember that your target e-mail address won't receive any notifications if you do not
confirm the subscription.

Viewing the newly created alarm shows its current state, and its recent history. An alarm
has three possible states:

ALARM: The metric is over the defined threshold
INSUFFICIENT_DATA: There were not enough data points to determine if the
metric is under or over the threshold
OK: The metric is under the defined threshold

You can filter alarms by their state by the links on the side menu, which also show an
updated view of how many alarms are in each state.

Behind the scenes, the wizard has created an SNS topic for you. The topic is what handles
converting the alarm message to an e-mail, and sending it. Without the SNS topic the alarm
would still alert (that is change state), but there would be no way to tell without looking at
the metric in the CloudWatch dashboard.

Management Tools

[157]

There's more...
This recipe represents the simplest useful configuration of SNS topics and CW alarms, but
there is a lot more depth available to you in this pattern.

Existing topics
Instead of choosing New list in the wizard, you can use the Select list functionality. You
then give the name of an existing SNS topic to use, rather than creating a new one.

This means you can set up a single topic to push multiple alarms to. In addition to being
simpler it also means you only need to confirm the subscription once, instead of doing it for
each alarm.

Management Tools

[158]

Other subscriptions
An SNS topic that notifies an e-mail is the most common subscription, but not the only
option. SNS topics can also send notifications to:

HTTP(S) endpoints
Amazon SQS
AWS Lambda
SMS

See also
The Creating monitoring dashboards recipe

Publishing custom metrics in CloudWatch
Once you get used to using CloudWatch, it is highly likely that you will want to see more
than just the built-in AWS metrics.

One of the most common metrics users ask for after starting to run servers in EC2 is
memory usage; the built-in metrics for EC2 instances are CPU utilization, network in/out,
disk reads/writes, and status—memory is not included by default!

This recipe will show you how to feed the amount of memory inuse on your Linux
instances to CloudWatch, so that you can see them alongside the other instance metrics.

Knowing how utilized (or not) your instances are is a key component in
choosing the right instance type to use for your workloads. Getting it
wrong can cost you a lot of money!

Getting ready
You will need an EC2 instance running Linux, with the AWS CLI tool installed to perform
this recipe. If you use an instance based on AWS Linux, you will have the AWS CLI tool
installed for you.

Management Tools

[159]

The instance role or credentials you use to run the following commands must have
permission to submit metrics to CloudWatch. This is the CloudWatch:PutMetricData
permission.

How to do it...
On the instance, run the following AWS CLI command:1.

 aws cloudwatch put-metric-data \
 --metric-name MemoryUsagePercent \
 --namespace CustomMetrics \
 --dimensions InstanceId=`curl -s \
 http://169.254.169.254/latest/meta-data/instance-id` \
 --unit Percent \
 --value `free | grep Mem | awk '{print $3/$2 * 100.0}'`

Go to the CloudWatch console, and navigate to the Metrics dashboard. Your2.
metric will appear under the namespace CustomMetrics, InstanceId, and the
unique ID for the instance, with the metric name MemoryUsagePercent.

It can take up to 15 minutes for a custom metric to appear in the
CloudWatch dashboard (although it usually takes less). Even for the built-
in metrics, it may take a minute or two for the metric data to appear in the
console.

How it works...
In this recipe, we use the built-in put-metric-data AWS CLI command to send our
metric to CloudWatch.

We start by defining the metric name and namespace that the values will appear under.
This is important because it defines how we will see the metric in the console and
dashboards. Names should identify and describe the metric. They do not need to be unique,
as the dimension(s) we add will take care of that (we will discuss this later). Namespaces
are used to group similar metrics together, like a category. The built-in metrics appear
under the namespace AWS/. For example, EC2 metrics appear under the AWS/EC2
namespace.

Management Tools

[160]

We then specify a dimension for the metric. A dimension is a way to uniquely identify
similar metrics. In this case we are using the instance's ID to identify the metric, because the
metric is unique to that instance, but we will likely have many instances of the
MemoryUsagePercent metric (across many EC2 instances). We are obtaining the instance
ID by querying (via the curl command) the instance metadata service, which is accessed
over HTTP on the special IP address 169.254.169.254.

There's a lot of other useful information in the instance metadata. See the
AWS documentation on instance metadata for more details
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-

metadata.html.

Next we specify a percent, because we know what kind of data we are dealing with. This
argument can be leftoff if you don't know (or care), as CloudWatch attaches no significance
to it (although some other applications may be able to use it, for example, for display).

Finally we specify the value to send. We work this value out dynamically from the output
of the free command and use awk to convert it to a percentage of memory inuse.

Once the metric is being sent to CloudWatch, we can view it in the console. The easiest way
is to select your specific metric and view it in the Metrics section of the CloudWatch
console.

There's more...
This is a good real-world use-case to get started with your own custom metrics, but there's a
lot more you can do with them.

Cron
One-off metric values are rarely useful on their own. The real value comes when you can
plot and see them over time; how they change, how fast they change, what their range is,
and so on.

On Linux you can schedule a command easily with the cron command. By putting the
AWS CLI commands in a script, and scheduling it with cron to run periodically, you can
feed metrics consistently to CloudWatch, without the overhead of running a dedicated
agent on your instances.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Management Tools

[161]

Auto scaling
Instance-based metrics like memory usage become especially useful when collected from all
the instances in an auto scaling group.

By collecting instance or even application-specific metrics (for example: number of threads
used, internal request duration, and so on) you can make your auto scaling groups increase
and decrease in size at the most appropriate times to your workload and performance
profile.

To do this, make the auto scaling group name one of the dimensions (you can define
multiple dimensions) sent along with your metric value.

Backfilling
You can backfill metrics by running the same command and supplying an additional --
timestamp argument. The timestamp argument accepts an ISO 8601 date and time stamp
in UTC time for example: 2017-01-01T12:00:00.000Z

Keep in mind that CloudWatch will only retain your metrics for a certain period, decided
by the granularity of your metrics. The retention period is:

Data points with a period of 60 seconds (1 minute) are available for 15 days
Data points with a period of 300 seconds (5 minute) are available for 63 days
Data points with a period of 3600 seconds (1 hour) are available for 455 days (15
months)

While you can send metrics with millisecond precision, the minimum
value CloudWatch will store is at the 1 minute level. Anything less than
the 1 minute level and CloudWatch will aggregate the values. When
aggregated, you can see some additional information about your metric;
namely the sample size, minimum and maximum value, and the average
of the values.

See also
The Creating monitoring dashboards recipe
The Launching an Instance recipe in Chapter 4, Using AWS Compute.

Management Tools

[162]

Creating monitoring dashboards
The real value of collecting metrics is the ability to spot trends and relationships (often
unknown or unexpected) between disparate systems. With this kind of visibility, you are
able to identify and troubleshoot issues before they become an incident.

In addition to providing a way to aggregate and view metrics from your systems, the
CloudWatch service also makes it easy to create monitoring dashboards so that you can
quickly and clearly view the most important metrics.

This recipe uses the AWS console because you cannot create dashboards via
CloudFormation or the AWS CLI tool yet.

Getting ready
You will need to have some metrics already present in CloudWatch in order to create a
dashboard.

If you have been using AWS services (for example: EC2, RDS, DDB, and so on), then you
should have plenty—almost all the AWS services populate metrics in CloudWatch by
default.

How to do it...
Navigate to the CloudWatch section of the AWS console:1.

Management Tools

[163]

Go to the Dashboards section of the console via the link on the left-hand menu:2.

Management Tools

[164]

Click the Create Dashboard button:3.

Management Tools

[165]

Choose the type of widget you want to use to display your metric. In this4.
example, we will choose the most versatile, Line:

Management Tools

[166]

Navigate the All metrics tab to find the metric(s) you want to include, selecting it5.
by clicking the tick box on the left of the metric details. You will see a preview of
the metric(s) and how they will look:

Management Tools

[167]

Once selected, you can modify how the metric is displayed via the settings on the6.
Graphed metrics tab. In this case we have given the widget a name, and changed
the Period setting for our metric to 1 Minute to reflect the additional granularity
available (You can see that the metric line appears smoother because of it).

Management Tools

[168]

Once you click Create widget, you will see your widget on the dashboard. Once7.
you click Save dashboard, it will appear under the Dashboards heading on the
left-hand menu:

Management Tools

[169]

At a dashboard level, you can turn on Auto refresh and the refresh frequency8.
interval:

Management Tools

[170]

You can resize and rearrange your widgets by dragging them. Just remember to9.
click Save dashboard to persist any changes:

There's more...
CloudWatch dashboard's value is the ease and simplicity that it allows you to publicize
your most important metrics.

As with any dashboard, make sure that the metrics you choose to display
are relevant and actionable. There's no point in displaying a metric if
there's no action required when it changes.

Management Tools

[171]

Widget types
Line graphs are not the only type of widget that can be displayed in a dashboard. There is
also:

Stacked area
Number
Text

Depending on the type of metrics you are collecting or are interested in, you should
experiment with different types of widgets to display them. Not all metrics are suited to line
graphs.

See also
The Publishing custom metrics in CloudWatch recipe.

Creating a budget
One of the main attractions of using AWS, is its pay-as-you-go model. You only pay for
what you use, no more and no less.

Unfortunately, this can sometimes result in what's known as bill shock at the end of the
month. This happens when you do something that you might not know is a charged service,
or you do not know how much is charged for it, and you don't find out until it's too late.
Especially when getting started, users may not fully appreciate the cost of the activities
they're undertaking.

There are also ways to optimize your costs on AWS, for example, by transferring at slower
speeds, removing external access, and so on. All this means that you should be aware of
your cost obligations, and manage them in real time. To this end, you can create budgets
that help you be aware of your usage and spending.

While you can create budgets via the AWS CLI tool, it is useful to know how the Billing
dashboard works for administration purposes, so we will use the AWS console for this
recipe.

Management Tools

[172]

Getting ready
By default, IAM Users do not have access to the billing section of the AWS console. You
must perform these steps using the root login details for your account, or enable IAM access
for other users, which is a one-off step.

While you should not generally use the root credentials for your AWS account when
administering, creating budgets (which should happen only infrequently) is an exception.

You should not be creating access keys for your root account under any
circumstances, which is another reason why we use the console (and not
the CLI) for this recipe.

How to do it...
Log in to the AWS console with your root credentials, and navigate to the My1.
Billing Dashboard via the user menu accessed by clicking on your name in the
top right:

Management Tools

[173]

The Billing dashboard displays your up-to-date usage for the month. Click on2.
Budgets in the left-hand menu:

Management Tools

[174]

When you first arrive at the Budgets console, there will be no budgets to display.3.
Click on the Create budget button to get started:

Management Tools

[175]

Start by filling out the budget details, such as Cost for the measurement type,4.
Monthly for the period, and the budget amount. Select the Start date (which
defaults to the first of the current month), and optionally the End date. Leave the
End date field blank to create a rolling budget that is reset each month:

Management Tools

[176]

Next enter the notification details. This includes the threshold for notification,5.
which we will set to be 80% (of our budget) in forecasted use. For e-mail
notifications, simply enter the e-mail addresses you want to receive the
notifications. Click Create when finished:

You will be returned to the Budgets section of the Billing dashboard, and you6.
can see your newly created budget:

Management Tools

[177]

For each of the budgets you create, you can select it to view the full details:7.

Management Tools

[178]

How it works...
The Billing dashboard is closely tied to the account itself, which is why it is not part of the
regular services in the console. Accessing it via the user menu hints at the special access it
requires. Generally, you would configure a budget when you first open a new AWS
account, so you don't get any surprises in your bill at the end of the month.

If you get access denied messages in the Billing dashboard, it is most likely because you are
using an IAM user and IAM access has not been enabled. You must use your root account
credentials (such as that you used to create the account), or enable IAM access. IAM access
can only be enabled by the root user.

When you first arrive at the billing section, you will see a high-level summary of your usage
and expenses. As I performed this example in a new account, there's not much to see at this
point. The Month-to-Date Spend by Service graph on the right can be particularly useful to
find out what the most popular services you use are. This is a great place to start when
trying to reduce or optimize your AWS spending.

We then navigate to the budgets section and create a new budget. Most of the details should
be self-explanatory, and obvious for the purposes of budgeting. Your main choice is to
decide if you want to alert on usage or costs. Cost budgets work against the dollar (or
appropriate billing currency) amount you will be charged. Usage budgets work against a
selected unit of usage, for example, instance hours or data transfer for EC2. A usage budget
can only track one type of usage unit, so you will need to create multiple budgets to track
the various units that you might be charged for. This is one reason why we prefer a cost
budget, as it takes into account multiple forms of usage.

Specifying e-mail addresses to alert is the simplest way to send any alerts from the budget.
For more advanced use cases, you can specify an SNS topic to receive notifications. An
example might be if you wanted to receive budget alerts on your phone via an SMS
message, or send the alert to a different system automatically (via HTTP/JSON).

Once finished, you can view all your budgets in the dashboard. You can repeat the process
to create multiple budgets. This means you can create budgets for forecast usage and actual
usage, as well as different time periods.

Feeding log files into CloudWatch logs
CloudWatch logs is a managed, highly durable, log storage system in AWS. It's capable of
ingesting logs from many sources. We're going to focus on what is probably the most
common use case which is shipping logs off your EC2 instances into CloudWatch logs.

Management Tools

[179]

This capability is particularly important in highly dynamic auto scaling environments. Since
the lifetime of your EC2 instances can be quite short, any logs which are written only to a
local disk will be lost upon instance termination. You'll inevitably find yourself wishing you
had access to server logs after an instance has disappeared.

The following pattern we're about to show you allows you to aggregate, search and filter
log entries across a number of sources. You can then create custom metrics and trigger
alarms based on log activity. Super handy!

In this recipe we're going to:

Launch an EC2 instance
Configure it to send logs to CloudWatch logs
Create a filter based on SSH logins to the instance
Send ourselves an e-mail alert on filter matches

This might be something you'd consider doing on your bastion boxes since
they will typically be the sole point of SSH access to your environments
and it can be a good idea to make a lot of noise if people are logging in to
production servers.

Getting ready
We're going to do all of this in us-east-1 with the AWS Linux AMI. If you wish to do this
in a different region you'll simply need to provide a different AMI ID to the template we're
going to create.

Let's get in to it; you'll need the following:

The VPC ID of your default VPC in us-east-1. You don't have to use the default
VPC, you'll just need to make sure you choose a VPC which has a public subnet
(which is configured to assign public IP addresses)
The subnet ID of the public subnet
An SSH key pair configured in us-east-1
An e-mail address we can send alerts to

Management Tools

[180]

How to do it...
Create a new CloudFormation template. Add the following Parameters to it:1.

 AmiId:
 Type: AWS::EC2::Image::Id
 Description: AMI ID to launch instances from
 Default: ami-0b33d91d
 VpcId:
 Type: AWS::EC2::VPC::Id
 Description: VPC where load balancer and instance will launch
 SubnetIDs:
 Type: List<AWS::EC2::Subnet::Id>
 Description: Public subnet where the instance will launch
 (pick at least 1)
 KeyPair:
 Type: AWS::EC2::KeyPair::KeyName
 Description: Key to launch EC2 instance with
 AlertEmail:
 Type: String
 Description: Email Address which alert emails will be sent to

Now for the Resources, we need to define a Role and InstanceProfile for2.
our EC2 instance. This will give our server the appropriate permissions to send
logs to CloudWatch.

 ExampleRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Effect: Allow
 Principal:
 Service:
 - ec2.amazonaws.com
 Action:
 - sts:AssumeRole
 Path: /
 Policies:
 -
 PolicyName: WriteToCloudWatchLogs
 PolicyDocument:
 Version: "2012-10-17"
 Statement:

Management Tools

[181]

 -
 Effect: Allow
 Action:
 - logs:CreateLogGroup
 - logs:CreateLogStream
 - logs:PutLogEvents
 - logs:DescribeLogStreams
 Resource: "*"
 ExampleInstanceProfile:
 Type: AWS::IAM::InstanceProfile
 Properties:
 Roles:
 - !Ref ExampleRole
 Path: /

Our instance will need to live in a security group which allows SSH access, so3.
let's add that now:

 ExampleEC2InstanceSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Security Group for example Instance
 SecurityGroupIngress:
 - IpProtocol: tcp
 CidrIp: "0.0.0.0/0"
 FromPort: 22
 ToPort: 22
 VpcId: !Ref VpcId

Next we can define our instance. We make sure to use the profile and security4.
group we just created and we also add a small amount of user-data which does
the following:

Install the awslogs package.1.
Writes a configuration file which will ship /var/log/secure to2.
CloudWatch logs.
Starts the awslogs service.3.
Make the awslogs service start on boot (in case of reboot).4.

 ExampleEC2Instance:
 Type: AWS::EC2::Instance
 Properties:
 IamInstanceProfile: !Ref ExampleInstanceProfile
 InstanceType: t2.nano
 KeyName: !Ref KeyPair
 UserData:
 Fn::Base64:

Management Tools

[182]

 Fn::Sub: |
 #!/bin/bash -ex
 yum update -y
 yum install -y awslogs
 cat << EOF >
 /etc/awslogs/config/var-log-secure.conf
 [/var/log/secure]
 datetime_format = %b %d %H:%M:%S
 file = /var/log/secure
 buffer_duration = 5000
 log_stream_name = {instance_id}
 initial_position = start_of_file
 log_group_name = /var/log/secure
 EOF
 service awslogs start
 chkconfig awslogs on
 ImageId: !Ref AmiId
 SecurityGroupIds:
 - Fn::GetAtt: ExampleEC2InstanceSecurityGroup.GroupId
 SubnetId: !Select [0, Ref: SubnetIDs]

We're now going to add an SNS topic. This topic will receive alerts and forward5.
them to the e-mail address we're using for alerts:

 ExampleSNSTopic:
 Type: AWS::SNS::Topic
 Properties:
 Subscription:
 -
 Endpoint: !Ref AlertEmail
 Protocol: email

Next, we need to filter our /var/log/secure logs for logins. A MetricFilter6.
resource allows us to do this. CloudFormation will throw an error if we refer to a
log group which doesn't yet exist, so we add that here too (with a DependsOn
reference):

 ExampleLogGroup:
 Type: AWS::Logs::LogGroup
 Properties:
 LogGroupName: /var/log/secure
 RetentionInDays: 7
 ExampleLogsMetricFilter:
 Type: AWS::Logs::MetricFilter
 Properties:
 FilterPattern: '"Accepted publickey for ec2-user from"'
 LogGroupName: /var/log/secure

Management Tools

[183]

 MetricTransformations:
 -
 MetricValue: "1"
 MetricNamespace: SSH/Logins
 MetricName: LoginCount
 DependsOn: ExampleLogGroup

The last Resource we need is the actual Alarm. Add it like so:7.

 ExampleLoginAlarm:
 Type: AWS::CloudWatch::Alarm
 Properties:
 AlarmDescription: SSH Login Alarm
 AlarmActions:
 - Ref: ExampleSNSTopic
 MetricName: LoginCount
 Namespace: SSH/Logins
 Statistic: Sum
 Period: 60
 EvaluationPeriods: 1
 Threshold: 0
 ComparisonOperator: GreaterThanThreshold

Lastly, we'll add the public IP address of our instance to the Outputs so we don't8.
need to go to the EC2 web console to look it up:

 Outputs:
 ExampleEC2InstancePublicIp:
 Value: !GetAtt [ExampleEC2Instance, PublicIp]

Go ahead and launch this CloudFormation stack. You can do it from the AWS9.
CLI like this:

 aws cloudformation create-stack \
 --template-body \
 file://05-feed-log-files-in-to-cloudwatch-logs.yaml \
 --stack-name example-cloudwatchlogs \
 --capabilities CAPABILITY_IAM \
 --parameters \
 ParameterKey=VpcId,ParameterValue=<your-vpc-id> \
 ParameterKey=SubnetIDs,ParameterValue='<your-subnet-id>' \
 ParameterKey=KeyPair,ParameterValue=<your-ssh-key-name> \
 ParameterKey=AlertEmail,ParameterValue=<your-email-address>

Management Tools

[184]

Before proceeding you'll need to check your e-mail and confirm your10.
subscription to the SNS topic. If you don't do this you won't receive any alerts
from CloudWatch:

In the following screenshot, an example of confirmed subscription is illustrated:

Management Tools

[185]

Go ahead and SSH to your instance. If your login is successful, you'll see your11.
alarm triggered in the CloudWatch web console:

Management Tools

[186]

An e-mail will land in your inbox as shown in the following screenshot:

How it works...
It's important that you understand the difference between log streams and log groups.

Log streams are log sequences which come from a single source. This could be an EC2
instance, an application process, or another source within AWS. In our case the name of our
log stream is the ID of our EC2 instance. In fact, the CloudWatch logs agent will set the
log_stream_name to the instance ID by default.

Log groups are collections of log streams with the same properties. In our previous
example, the log groups will correspond to /var/log/secure. So, we end up with a
configuration which looks like:

 log_group_name = /var/log/secure
 log_stream_name = {instance_id}

Management Tools

[187]

When you install the CloudWatch logs agent, it actually sets up /var/log/messages in
exactly the same manner as we've just described:

 log_group_name = /var/log/messages
 log_stream_name = {instance_id}

Once the agent has started, it will ship new log entries off the box to CloudWatch logs
approximately every 5 seconds.

There's more...
CloudWatch logs supports ingestion of traditional text-based log entries as well
as JSON formatted logs.
Logs can be ingested from other sources including CloudTrail, IAM, Kinesis
Streams and Lambda.
By default, logs are stored indefinitely. You can customize this time period to suit
your needs however.
Metric filters, like the one we created previously, can be used to graph and chart
in the CloudWatch console. Add them to your dashboards as well as your
alerting system.
The CloudWatch web console allows you to test metric filters before you add
them. Using this feature will save you a lot of trial and error with
CloudFormation. Don't rely on the web console completely however: you should
move these metric filters to CloudFormation as soon as you get them right.
There is a one-one relationship between a log stream and a log source. For
example, you can't have multiple instances sending /var/log/secure to the
same log stream.
The non-alarm state for the alarm we've created, will be INSUFFICIENT_DATA.
This is because our metric filter outputs a value only if a login is detected.

6
Database Services

In this chapter, we will cover:

Creating a database with automatic failover
Creating a NAT gateway
Creating a database read-replica
Promoting a read-replica to master
Creating a one-time database backup
Restoring a database from a snapshot
Migrating a database
Calculating DynamoDB performance

Introduction
Having a persistent storage service is a key component of effectively using the AWS cloud
for your systems. By ensuring that you have a highly available, fault-tolerant location to
store your application state in, you can stop depending on individual servers for your data.

Database Services

[189]

Creating a database with automatic failover
In this recipe, we're going to create a MySQL RDS database instance configured in multi-AZ
mode to facilitate automatic failover.

Database with automatic failover

Getting ready
The default VPC will work fine for this example. Once you are comfortable with creating
databases, you may want to consider a VPC containing private subnets that you can use to
segment your database away from the Internet and other resources (in the style of a three
tier application). Either way, you'll need to note down the following:

The ID of the VPC

Database Services

[190]

The CIDR range of the VPC
The IDs of at least two subnets in your VPC. These subnets need to be in different
Availability Zones, for example, us-east-1a and us-east-1b

How to do it...
Create a new CloudFormation template. We're going to add a total of 12 parameters to it:

The first three parameters will contain the values we mentioned in the Getting1.
ready section:

 VPCId:
 Type: AWS::EC2::VPC::Id
 Description: VPC where DB will launch
 SubnetIds:
 Type: List<AWS::EC2::Subnet::Id>
 Description: Subnets where the DB will launch (pick at least 2)
 SecurityGroupAllowCidr:
 Type: String
 Description: Allow this CIDR block to access the DB
 Default: "172.30.0.0/16"

We're also going to add the database credentials as parameters. This is good2.
practice as it means we're not storing any credentials in our infrastructure source
code. Note that the password contains the NoEcho parameter set to true. This
stops CloudFormation from outputting the password wherever the
CloudFormation stack details are displayed:

 DBUsername:
 Type: String
 Description: Username to access the database
 MinLength: 1
 AllowedPattern: "[a-zA-Z][a-zA-Z0-9]*"
 ConstraintDescription: must start with a letter, must
 be alphanumeric
 DBPassword:
 Type: String
 Description: Password to access the database
 MinLength: 1
 AllowedPattern: "[a-zA-Z0-9]*"
 NoEcho: true
 ConstraintDescription: must be alphanumeric

Database Services

[191]

The next block of parameters pertains to cost and performance. They should be3.
mostly self-explanatory. Refer to the AWS documentation on database instance
types should you wish to change the instance class for this example. We're
supplying a default value of 10 GB for the storage size and choosing a magnetic
(standard) volume for the storage type. gp2 offers better performance, but it
costs a little more:

 DBInstanceClass:
 Type: String
 Description: The instance type to use for this database
 Default: db.t2.micro
 DBStorageAmount:
 Type: Number
 Description: Amount of storage to allocate (in GB)
 Default: 10
 DBStorageType:
 Type: String
 Description: Type of storage volume to use
 (standard [magnetic] or gp2)
 Default: standard
 AllowedValues:
 - standard
 - gp2

We need to set some additional parameters for our database. These are the4.
MySQL engine version and port. Refer to the AWS documentation for a list of all
the available versions. We are setting a default value for this parameter as the
latest version of MySQL at the time of writing:

 DBEngineVersion:
 Type: String
 Description: DB engine version
 Default: "5.7.11"
 DBPort:
 Type: Number
 Description: Port number to allocate
 Default: 3306
 MinValue: 1150
 MaxValue: 65535

Database Services

[192]

Finally, we are going to define some parameters relating to backup and5.
availability. We want our database to run in multi-AZ mode, we set this to true
by default. We also set a backup retention period of 1 day by default; you might
want to choose a period larger than this. If you set this value to 0, backups will be
disabled (not recommended!):

 DBMultiAZ:
 Type: String
 Description: Should this DB be deployed in Multi-AZ configuration?
 Default: true
 AllowedValues:
 - true
 - false
 DBBackupRetentionPeriod:
 Type: Number
 Description: How many days to keep backups (0 disables backups)
 Default: 1
 MinValue: 0
 MaxValue: 35

We're done with the parameters for this template; we can now go ahead and start6.
defining our Resources. First of all, we want a security group for our DB to
reside in. This security group allows inbound access to the database port from the
CIDR range we've defined:

 ExampleDBSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Example security group for inbound access to DB
 SecurityGroupIngress:
 - IpProtocol: tcp
 CidrIp: !Ref SecurityGroupAllowCidr
 FromPort: !Ref DBPort
 ToPort: !Ref DBPort
 VpcId: !Ref VPCId

Next, we need to define a DBSubnetGroup resource. This resource is used to7.
declare which subnet(s) our DB will reside in. We define two subnets for this
resource so that the primary and standby servers will reside in separate
Availability Zones:

 ExampleDBSubnetGroup:
 Type: AWS::RDS::DBSubnetGroup
 Properties:
 DBSubnetGroupDescription: Example subnet group for example DB
 SubnetIds:

Database Services

[193]

 - Fn::Select: [0, Ref: SubnetIds]
 - Fn::Select: [1, Ref: SubnetIds]

Finally, we define our RDS instance resource. We specify it as being a MySQL8.
database and the rest of the properties are made up of the parameters and
resources that we've defined previously. Lots of !Ref is required here:

 ExampleDBInstance:
 Type: AWS::RDS::DBInstance
 Properties:
 AllocatedStorage: !Ref DBStorageAmount
 BackupRetentionPeriod: !Ref DBBackupRetentionPeriod
 DBInstanceClass: !Ref DBInstanceClass
 DBSubnetGroupName: !Ref ExampleDBSubnetGroup
 Engine: mysql
 EngineVersion: !Ref DBEngineVersion
 MasterUsername: !Ref DBUsername
 MasterUserPassword: !Ref DBPassword
 MultiAZ: !Ref DBMultiAZ
 StorageType: !Ref DBStorageType
 VPCSecurityGroups:
 - !GetAtt ExampleDBSecurityGroup.GroupId

For good measure, we can add an output to this template that will return the9.
hostname for this RDS database:

 Outputs:
 ExampleDbHostname:
 Value: !GetAtt ExampleDBInstance.Endpoint.Address

You can provision the database via the CloudFormation web console or use a CLI10.
command like so:

 aws cloudformation create-stack \
 --stack-name rds1 \
 --template-body \
 file://06-create-database-with-automatic-failover.yaml \
 --parameters \
 ParameterKey=DBUsername,ParameterValue=<username> \
 ParameterKey=DBPassword,ParameterValue=<password> \
 ParameterKey=SubnetIds,"ParameterValue='<subnet-id-a>, \
 <subnet-id-b>'" \
 ParameterKey=VPCId,ParameterValue=<vpc-id>

Database Services

[194]

How it works...
In a multi-AZ configuration, AWS will provision a standby MySQL instance in a separate
Availability Zone. Changes to your database will be replicated to the standby DB instance
in a synchronous fashion. If there is a problem with your primary DB instance AWS will
automatically failover to the standby, promote it to be the primary DB, and provision a new
standby.

You don't have access to query standby databases directly. So you can't use it to handle all
of your read queries, for example. If you wish to use additional database instances to
increase read capacity, you'll need to provision a read-replica. We'll cover those in a separate
recipe.

Backups will always be taken from the standby instance, which means there is no
interruption to your DB availability. This is not the case if you opted against deploying your
DB in multi-AZ mode.

When you deploy this example it will take roughly 20 minutes or more for the stack to
report completion. This is because the RDS service needs to go through the following
process in order to provision a fully working multi-AZ database:

Provision the primary database
Back up the primary database
Provision the standby database using the backup from the primary
Configure both databases for synchronous replication

WARNING
Be careful about making changes to your RDS configuration after you've
started writing data to it, especially when using CloudFormation updates.
Some RDS configuration changes require the database to be re-
provisioned, which can result in data loss. We'd recommend using
CloudFormation change sets, which will give you an opportunity to see
which changes are about to cause destructive behavior. The
CloudFormation RDS docs also provide some information on this.

Database Services

[195]

There's more...
You can define a maintenance window for your RDS instance. This is the time
period when AWS will perform maintenance tasks such as security patches or
minor version upgrades. If you don't specify a maintenance window (which we
don't in this example), one is chosen for you.

Creating a NAT gateway
Unless required, your instances should not be publicly exposed to the Internet. When your
instances are on the Internet, you have to assume that they will be attacked at some stage.

This means most of your workloads should run on instances in private subnets. Private
subnets are those that are not connected directly to the Internet.

In order to give your private instances access to the Internet you use network address
translation (NAT). A NAT gateway allows your instances to initiate a connection to the
Internet, without allowing connections from the Internet.

Getting ready
For this recipe, you must have the following resources:

A VPC with an Internet gateway (IGW)
A public subnet
A private subnet route table

You will need the IDs for the public subnet and private subnet route table. Both of these
resources should be in the same AZ.

How to do it...
Start with the usual CloudFormation template version and description:1.

 AWSTemplateFormatVersion: "2010-09-09"
 Description: Create NAT Gateway and associated route.

Database Services

[196]

The template must take the following required parameters:2.

 Parameters:
 PublicSubnetId:
 Description: Public Subnet ID to add the NAT Gateway to
 Type: AWS::EC2::Subnet::Id
 RouteTableId:
 Description: The private subnet route table to add the NAT
 Gateway route to
 Type: String

In the Resources section, define an Elastic IP that will be assigned to the NAT3.
gateway:

 Resources:
 EIP:
 Type: AWS::EC2::EIP
 Properties:
 Domain: vpc

Create the NAT gateway resource, assigning it the EIP you just defined in the4.
public subnet:

 NatGateway:
 Type: AWS::EC2::NatGateway
 Properties:
 AllocationId: !GetAtt EIP.AllocationId
 SubnetId: !Ref PublicSubnetId

Finally, define the route to the NAT gateway and associate it with the private5.
subnet's route table:

 Route:
 Type: AWS::EC2::Route
 Properties:
 RouteTableId: !Ref RouteTableId
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId: !Ref NatGateway

How it works...
The parameters required for this recipe are as follows:

A public subnet ID
A private subnet route table ID

Database Services

[197]

The public subnet ID is needed to host the NAT gateway, as it must have Internet access.
The private subnet route table will be updated with a route to the NAT gateway.

Using the AWS NAT gateway service means that AWS takes care of hosting and securing
the service for you. The service will be hosted redundantly in a single AZ.

You can use the recipe multiple times to deploy NAT gateways in each of
your private subnets. Just make sure the public subnet and the private
subnet are in the same AZ.

To cater for the unlikely event of an AZ outage (unlikely, but possible) you should deploy a
NAT gateway per subnet. This means if one NAT gateway goes offline, instances in the
other AZ can continue to access the Internet as normal. You are deploying your application
in multiple AZs, aren't you?

This recipe will only work if you have created your own private subnets, as the default
subnets in a new AWS account are all public. Instances in a public subnet have direct access
to the Internet (via an IGW), so they do not need a NAT gateway.

See also
The Building a secure network recipe in Chapter 7, Networking

Creating a database read-replica
This recipe will show you how to create an RDS read-replica. You can use read-replicas in
order to increase the performance of your application by off-loading database reads to a
separate database instance. You can provision up to five read-replicas per source DB.

Database Services

[198]

Read-only database slaves

Getting ready
You will need an RDS DB deployed with backup retention enabled. We are going to build
upon the DB deployed in the previous Creating a database with automatic failover recipe.

You're going to need the following values:

The identifier for your source RDS instance, for example, eexocwv5k5kv5z
A unique identifier for the read-replicate we're going to create, for
example, read-replica-1

Database Services

[199]

How to do it...
In the AWS CLI, type this command:

aws rds create-db-instance-read-replica \
 --source-db-instance-identifier <source-db-identifier> \
 --db-instance-identifier <unique-identifier-for-replica>

How it works...
RDS will now go ahead and create a new read-replica for you.

Some parameters are inherited from the source instance and can't be defined at the time of
creation:

Storage engine
Storage size
Security group

The CLI command accepts some parameters that we could have defined, but didn't to keep
things simple. They will instead be inherited from the source database. The main two are as
follows:

--db-instance-class: The same class as the source instance is used
--db-subnet-group-name: The source instance's subnet group will be used and
a subnet is chosen at random (hence, an Availability Zone is chosen at random)

There's more...
Read-replicas are deployed in a single Availability Zone; there is no standby
read-replica.
It's not possible to enable backups on read-replicas during time of creation. This
must be configured afterwards.
The default storage type is standard (magnetic). You can increase performance
by choosing gp2 or using provisioned IOPS.
It's possible to add MySQL indexes directly to a read-replica to further increase
read performance. These indexes are not required to be present on the primary
DB.

Database Services

[200]

Using read-replicas for availability purposes is more of a complimentary DR
strategy and shouldn't be used in place of multi-AZ RDS. A multi-AZ
configuration gives you the benefit of failure detection and automatic failover.
It is possible to deploy a read-replica in an entirely different region.
Unlike the replication between a primary and standby DB (which is
synchronous), replication to a read-replica is asynchronous. This means that it's
possible for a read-replica to fall behind the primary. Keep this in mind when
sending time sensitive read queries to your read-replicas.

Promoting a read-replica to master
We're going to show you how to promote an RDS read-replica to be a primary instance.
There are a few reasons you might like to do this:

To handle a table migration that would typically cause a large amount of
downtime, especially when messing with columns or indexes
Because you need to implement sharding
Recovery from failure, should you choose not to deploy your existing primary in
multi-AZ mode (not recommended)

Getting ready
You're going to need the unique ID, which has been assigned to an RDS read-replica. If you
followed the previous Creating a database with automatic failover, and Creating a database read-
replica recipes, then you'll be all set.

It's also a good idea to have backups enabled on this read-replica prior to promoting it. This
shortens the promotion process because you won't need to wait for a backup to be taken.
You'll want to set the backup retention period to a value between 1 and 8.

Enabling backups on your read-replica will cause it to reboot!

Database Services

[201]

In order to enable backups, you can use the following CLI command:

aws rds modify-db-instance \
 --db-instance-identifier <identifier-for-read-replica> \
 --backup-retention-period <days-to-keep-backups-for> \
 --apply-immediately

You can drop the --apply-immediately parameter if you prefer to wait
for the reboot to happen during the configured maintenance window. But
you'll still want to wait until after the reboot happens before you continue
with the promotion process.
To ensure that you have the most up-to-date data before promotion you'll
want to stop all write traffic to the current source primary DB before going
ahead. It's also a good idea to make sure that the replication lag on your
read-replica is 0 (you can check this in CloudWatch).

How to do it...
Run the following command to promote your read-replica to a primary DB1.
instance. This command will cause your read-replica to reboot:

 aws rds promote-read-replica \
 --db-instance-identifier <identifier-for-read-replica>

If you wish to then go ahead and configure your new primary RDS instance to2.
run in a multi-AZ configuration then you'll need to run this additional command.
Expect to wait a while for this operation to complete:

 aws rds modify-db-instance \
 --db-instance-identifier <identifier-for-new-primary> \
 --multi-az \
 --apply-immediately

Creating a one-time database backup
We're now going to show you how to make a one-off snapshot of your database. You might
opt to do this if you have a specific requirement around keeping a point in time backup of
your DB. You might also want to take a snapshot for the purpose of creating a new working
copy of your dataset.

Database Services

[202]

Getting ready
In order to proceed you're going to need the following:

The identifier for the RDS instance you wish to back up
A unique identifier that you'd like to assign to this snapshot

The snapshot identifier has some constraints:

It needs to start with a letter
It must not be longer than 255 characters

If your primary database isn't running in a multi-AZ configuration then be
aware that creating a snapshot will cause an outage. In a multi-AZ
configuration the snapshot is taken on the standby instance so no outage
occurs.

How to do it...
Type the following AWS CLI command to initiate the creation of a snapshot. You'll need to
wait for a few minutes for the snapshot to complete before you can use it:

aws rds create-db-snapshot \
 --db-instance-identifier <primary-rds-id> \
 --db-snapshot-identifier <unique-id-for-snapshot>

Restoring a database from a snapshot
We'll now talk through how to restore a database from a snapshot. This process creates a
new database that will retain a majority of the configuration of the database that the
snapshot was taken from.

Getting ready
You'll need the following pieces of information:

The ID of the snapshot you wish to restore from
A name or identifier that you wish to give to the database we're about to create

Database Services

[203]

AWS does not allow RDS services in your account to share the same
identifier. If the source database is still online you'll need to make sure to
choose a different identifier (or rename the source database).

How to do it...
Type the following command:1.

 aws rds restore-db-instance-from-db-snapshot \
 --db-snapshot-identifier <name-of-snapshot-to-restore > \
 --db-instance-identifier <name-for-new-db> \
 --db-subnet-group-name <your-db-subnet-group> \
 --multi-az

You may have noticed that this command creates a new database in the default2.
security group. This happens because the restore-db-instance-from-db-
snapshot doesn't accept a security group ID as a parameter. You'll have to run a
second command to assign a nondefault security group to the new database:

 aws rds modify-db-instance \
 --db-instance-identifier <name-of-newly-restored-db> \
 --vpc-security-group-ids <id-of-security-group>

The modify-db-instance command will return an error unless the state
of the target database is available.
Also, security group names aren't valid with this command; you'll need to
use a security group ID instead, for example, sg-7603d50a.

There's more...
The previous command includes the parameter for enabling multi-AZ on the new DB. If
you'd like the new DB to be running in single-AZ mode only then can you simply remove
this flag.

Database Services

[204]

Migrating a database
In this recipe, we will use Database Migration Service (DMS) to move an external database
into Relational Database Service (RDS).

Unlike many of the other recipes, this will be performed manually through the web console.

Most database migrations are one-off, and there are many steps involved. We suggest that
you first perform the process manually via the console before automating it, if required
(which you can do with the AWS CLI tool or SDKs).

Getting ready
For this recipe you will need the following:

An external database
An RDS database instance

The source database in this example is called employees, so substitute your own database
name as required.

Both databases must be accessible from the replication instance that will be created as part
of the recipe. The simplest way to do this is to allow access to the databases from the
Internet, but obviously this has security implications.

Database Services

[205]

How to do it...
Navigate to the DMS console:1.

Database Services

[206]

Click on Create Migration to start the migration wizard:2.

Database Services

[207]

Specify the details for your replication instance. Unless you have a specific VPC3.
configuration, the defaults will be fine:

Database Services

[208]

While waiting for the replication instance to be ready, fill out the source and4.
target endpoint information, including server hostname and port, and the
username and password to use when connecting:

Database Services

[209]

Once the instance is ready, the interface will update and you can proceed:5.

Database Services

[210]

In order to confirm and create the source and target endpoints, click on the Run6.
test button for each of your databases:

Database Services

[211]

After the endpoints have been successfully tested and created, define your task.7.
In this recipe, we will simply migrate the data (without ongoing replication):

Database Services

[212]

For simplicity, drop the tables in the target database (which should be empty) to8.
ensure parity between the databases:

Database Services

[213]

Finally, define the mappings between the two databases. In this case, we will9.
migrate all the tables (by using the wildcard %) in the employees database on the
source:

Database Services

[214]

Once you click Add selection rule you will see your rule in the selection rules10.
list:

Database Services

[215]

Once the task is defined you have finished the wizard. You will then see the task11.
being created:

Database Services

[216]

Once the status of the task is Ready you can select it and click on the12.
Start/Resume button:

Database Services

[217]

When complete, you will see the task's details updated in the console:13.

How it works...
At a high level, this is what the DMS architecture looks like:

Database Services

[218]

Both the Source and Target databases are external to DMS. They are represented internally
by endpoint resources that are references to the databases. Endpoints can be reused
between different tasks if needed.

This recipe starts by defining the replication instance details. Keep in mind that the DMS
migration process works best when the migration/transform between the two databases is
kept in memory. This means that for larger jobs you should allocate a more powerful
instance. If the process needs to temporarily write data to disk (such as swap) then the
performance and throughput will be much lower. This can have flow-on effects,
particularly for tasks that include ongoing replication.

Next, the two endpoints are defined. It is very important to verify your endpoint
configuration by using the built-in testing feature so that your tasks do not fail later in the
process. Generally, if the connectivity test fails, it is one of two main issues:

Network connectivity issues between the replication instance and the database.
This is particularly an issue for on-premise databases, which are usually
specifically restricted from being accessed externally.
User permissions issues: For example, in the case of MySQL, the root user cannot
be used to connect to the database externally, so this default user cannot be used.

Database Services

[219]

Defining the task involves defining your migration type. The recipe uses the simplest type;
migrate tables. This means that the data will be copied between the two databases, and will
be complete when the data is propagated. We also get to define the behavior on the target
database. For simplicity, we have configured the task to drop the tables in the target
database ensuring that the two databases look as similar as possible, even if the tables are
renamed, or the table mappings change. For the task table mappings we use the wildcard
symbol % to match all tables in the source database. Obviously, you could be more selective
if you only wanted to match a subset of your data.

Once the replication instance, endpoints, and task are defined the wizard ends and you are
returned to the DMS console. After the task is finished creating it can be started.

As it is a migrate existing data-type task, it will complete once all the data has been
propagated to the target database.

There's more...
This is obviously a simple example of what DMS can do. There are other features and
performance aspects that you should consider in more advanced scenarios.

Database engines
While this example uses two MySQL databases, it is possible to migrate from one database
engine to a complete database engine, for example, Oracle to MySQL. Unfortunately, this
can be a complex process, and while this functionality is very useful it is beyond the scope
of this recipe. Due to the differences in the various engines, there are some limitations on
what you can migrate and transform.

See the AWS Schema Conversion Tool documentation for more details on
what can be migrated between different database engines.

Ongoing replication
There are also some limits around the ongoing propagation of data—only table data can be
migrated. Things such as indexes, users, and permissions cannot be replicated continually.

Database Services

[220]

Multi-AZ
For ongoing replication tasks, you may want to create a multi-AZ replication instance so
that the impact of any interruptions of services are minimized. Obviously you will need to
have a similarly configured (such as multi-AZ) RDS instance as your target to get the full
benefit!

For best performance, when setting up your replication instance you
should make sure it is in the same AZ as your target RDS instance.

Calculating DyanmoDB performance
DynamoDB (DDB) is the managed NoSQL database service from AWS.

As DDB pricing is based on the amount of read and write capacity units provisioned, it is
important to be able to calculate the requirements for your use case.

This recipe uses a written formula to estimate the required read capacity units (RCU) and
write capacity units (WCU) that should be allocated to you DDB table.

It is also crucial to remember that while new partitions will be automatically added to a
DDB table, they cannot be automatically taken away. This means that excessive partitioning
can cause long-term impacts to your performance, so you should be aware of them.

Getting ready
All of these calculations assume that you have chosen a good partition key for your data. A
good partition key ensures the following:

Data is evenly spread across all the available partitions
Read and write activity is spread evenly in time

Unfortunately, choosing a good partition key is very data-specific, and beyond the scope of
this recipe.

All reads are assumed to be strongly consistent.

Database Services

[221]

How to do it...
Start with the size of the items, in kilobytes (KB):1.

ItemSize = Size of the items (rows) in KB

Work out the required number of RCUs required by dividing the number by 4,2.
and rounding up:

RCU Per Item = ItemSize / 4 (rounded up)

Define the expected number of read operations per second. This is one of the3.
numbers you will use to provision your table with:

Required RCU = Expected Number of Reads * RCU Per Item

Divide the number by 3,000 to calculate the number of DDB partitions required to4.
reach the capacity:

Read Partitions = Required RCU / 3,000

Next, work out the write capacity required by dividing the item size by 1, and5.
rounding up:

WCU Per Item = ItemSize / 1 (rounded up)

Define the expected number of write operations per second. This is one of the6.
numbers you will use to provision your table with:

Required WCU = Expected Number of Writes * WCU Per Item

Divide the number by 1,000 to calculate the number of DDB partitions required to7.
reach the capacity:

Write Partitions = Required WCU / 1,000

Add these two values to get the capacity partitions required (rounding up to a8.
whole number):

Capacity Partitions = Read Partitions + Write Partitions (rounded up)

Database Services

[222]

Work out the minimum number of partitions required by the amount of data you9.
plan to store:

Size Partitions = Total Size in GB / 10 (rounded up)

Once you have the partition requirements for your use case, take the maximum of10.
your previous calculations:

Required Partitions = Maximum value between Capacity Partitions and Size
Partitions

Since your allocated capacity is spread evenly across partitions, divide the RCU11.
and WCU values to get the per-partition performance of your table:

Partition Read Throughput = Required RCU / Required Partitions

Partition Write Throughput = Required WCU / Required Partitions

How it works...
Behind the scenes, DDB throughput is controlled by the number of partitions that are
allocated to your table. It is important to consider how your data will be spread across these
partitions to ensure you get the performance you expect and have paid for.

We start this recipe by calculating the size of the items in your database, for throughput
purposes. DDB has a minimum size it will consider, and even if an operation uses less than
this size, it is rounded up in terms of allocated throughput used. The minimum size
depends on the type of operation:

Read operations are calculated in 4-K blocks
Write operations are calculated in 1-K blocks

We then work out what the required RCU and WCU is, based on the expected number of
operations. These values are what can then be used to provision the DDB table, as they
represent the minimum required throughput (in optimal conditions).

Once you have these values, you can use them to provision your table.

Database Services

[223]

Next, we calculate the throughput per partition key. These calculations rely on knowing
what the performance of each partition is expected to be. The numbers 3,000 (for RCUs) and
1,000 (for WCUs) represent the capacity of a single DDB partition. By expressing the
capacity in terms of partition performance (reads and writes) and adding them together we
get the minimum number of partitions required from a capacity point of view.

We then do the same calculation for total data size. Each DDB partition can handle up to 10
GB of data. Any more than that will need to be split between multiple partitions.

The specific values for partition capacity (for reads, writes, and size) have
been stable for a while, but may change in the future. Double-check that
the current values are the same as used here for complete accuracy.

Once we have the minimum partitions for both capacity and size, we take the highest value
and work with that. This ensures we meet both the capacity and size requirements.

Finally, we take the provisioned capacity and divide it by the number of partitions. This
gives us the throughput performance for each partition key, which we can then use to
confirm against our use case.

There's more...
There are many nuances to using DDB efficiently and effectively. Here are some of the more
important/impactful things to note.

Burst capacity
There is a burst capacity available to tables that go over their allocated capacity. Unused
read and write capacity can be retained for up to five minutes (such as 300 seconds, for
calculation purposes). Relying on this capacity is not good practice, and it will undoubtedly
cause issues at some stage in the future.

Database Services

[224]

Metrics
DDB tables automatically send data to CloudWatch metrics. This is the quickest and easiest
way to confirm that your calculations and provision capacity are meeting your needs. It also
helps you keep an eye on your usage to track your throughput needs over time. All metrics
appear in the AWS/DynamoDB namespace. Some of the most interesting metrics for
throughput calculations are as follows:

ConsumedReadCapacityUnits

ConsumedWriteCapacityUnits

ReadThrottleEvents

WriteThrottleEvents

There are other metrics available; see the Amazon DynamoDB Metrics and Dimensions
documentation for more details.

Eventually consistent reads
Using eventually consistent reads (as opposed to strongly consistent reads) halves the RCU
requirements for calculation purposes. In this recipe, we have used strongly consistent
reads because it works with all workloads, but you should confirm that your use case
actually requires it. Use eventually consistent reads if it does not.

By reducing the required provisioned capacity for reads, you effectively
reduce your cost for using DDB.

7
Networking

In this chapter, we will cover:

Building a secure network
Creating a NAT gateway
Canary deployment via DNS
Hosting a domain
Routing based on location with failover
Network logging and troubleshooting

Introduction
Networking is a foundational component of using other AWS services such as EC2, RDS,
and others. Using constructs such as VPCs and NAT gateways gives you the capability and
confidence to secure your resources at a networking level. At a DNS level, Route 53
provides connectivity to your users in a responsive and fault-tolerant way that ensures the
best performance in a variety of scenarios.

Networking

[226]

Building a secure network
In this recipe, we're going to build a secure network (VPC) in AWS. This network will
consist of two public and private subnets split across two Availability Zones. It will also
allow inbound connections to the public subnets for the following:

SSH (port 22)
HTTP (port 80)
HTTPS (port 443)

Building a secure network

Networking

[227]

Getting ready
Before we proceed, you're going to need to know the names of at least two Availability
Zones in the region we're deploying to. The recipes in this book will typically deploy to us-
east-, so to get things moving you can just use the following:

us-east-1a

us-east-1b

When you create an AWS account, your zones are randomly allocated.
This means that us-east-1a in your account isn't necessarily the same
data center as us-east-1a in my account.

How to do it...
Go ahead and create a new CloudFormation template for our VPC. Just a heads-up: this will
be one of the larger templates that we'll create in this book:

The first two Parameters correspond to the Availability Zones we discussed1.
previously. We don't provide any default values for these parameters, to
maintain region portability:

 Parameters:
 AvailabilityZone1:
 Description: Availability zone 1 name (e.g. us-east-1a)
 Type: AWS::EC2::AvailabilityZone::Name
 AvailabilityZone2:
 Description: Availability zone 2 name (e.g. us-east-1b)
 Type: AWS::EC2::AvailabilityZone::Name

The shell of our VPC has now been created. At this point, it's not connected to the2.
Internet, so it's not entirely useful to us. We need to add an Internet gateway and
attach it to our VPC. Go ahead and do that, as follows:

 Resources:
 # VPC & subnets
 ExampleVPC:
 Type: AWS::EC2::VPC
 Properties:
 CidrBlock: !Ref VPCCIDR
 EnableDnsSupport: true
 EnableDnsHostnames: true

Networking

[228]

 Tags:
 - { Key: Name, Value: Example VPC }
 PublicSubnetA:
 Type: AWS::EC2::Subnet
 Properties:
 AvailabilityZone: !Ref AvailabilityZone1
 CidrBlock: !Ref PublicSubnetACIDR
 MapPublicIpOnLaunch: true
 VpcId: !Ref ExampleVPC
 Tags:
 - { Key: Name, Value: Public Subnet A }
 PublicSubnetB:
 Type: AWS::EC2::Subnet
 Properties:
 AvailabilityZone: !Ref AvailabilityZone2
 CidrBlock: !Ref PublicSubnetBCIDR
 MapPublicIpOnLaunch: true
 VpcId: !Ref ExampleVPC
 Tags:
 - { Key: Name, Value: Public Subnet B }
 PrivateSubnetA:
 Type: AWS::EC2::Subnet
 Properties:
 AvailabilityZone: !Ref AvailabilityZone1
 CidrBlock: !Ref PrivateSubnetACIDR
 VpcId: !Ref ExampleVPC
 Tags:
 - { Key: Name, Value: Private Subnet A }
 PrivateSubnetB:
 Type: AWS::EC2::Subnet
 Properties:
 AvailabilityZone: !Ref AvailabilityZone2
 CidrBlock: !Ref PrivateSubnetBCIDR
 VpcId: !Ref ExampleVPC
 Tags:
 - { Key: Name, Value: Private Subnet B }

The remaining Parameters define the IP address ranges for the following:3.
The entire VPC
The public subnets (A and B)
The private subnets (A and B)

The default values we provide for the subnets will allocate 512 IP addresses to4.
each subnet:

Networking

[229]

AWS reserves a small number of IP addresses in your IP space for AWS-
specific services. The VPC DNS server is one such example of this. It's
usually located at the second (*.2) IP address in the block allocated to
your VPC.

 VPCCIDR:
 Description: CIDR block for VPC
 Type: String
 Default: "172.31.0.0/21" # 2048 IP addresses
 PublicSubnetACIDR:
 Description: CIDR block for public subnet A
 Type: String
 Default: "172.31.0.0/23" # 512 IP address
 PublicSubnetBCIDR:
 Description: CIDR block for public subnet B
 Type: String
 Default: "172.31.2.0/23" # 512 IP address
 PrivateSubnetACIDR:
 Description: CIDR block for private subnet A
 Type: String
 Default: "172.31.4.0/23" # 512 IP address
 PrivateSubnetBCIDR:
 Description: CIDR block for private subnet B
 Type: String
 Default: "172.31.6.0/23" # 512 IP address

Now we can start to define Resources. We'll start by defining the VPC itself, as5.
well as the two public and two private subnets inside it:

 # Internet Gateway
 ExampleIGW:
 Type: AWS::EC2::InternetGateway
 Properties:
 Tags:
 - { Key: Name, Value: Example Internet Gateway }
 IGWAttachment:
 Type: AWS::EC2::VPCGatewayAttachment
 DependsOn: ExampleIGW
 Properties:
 VpcId: !Ref ExampleVPC
 InternetGatewayId: !Ref ExampleIGW

Networking

[230]

We need to create a couple of route tables. The first one we'll focus on is the6.
public route table. We'll assign this route table to the two public subnets we've
created. This route table will have just one route in it, which will direct all
Internet-bound traffic to the Internet gateway we created in the previous step:

 # Public Route Table
 # Add a route for Internet bound traffic pointing to our IGW
 # A route for VPC bound traffic will automatically be added
 PublicRouteTable:
 Type: AWS::EC2::RouteTable
 Properties:
 VpcId: !Ref ExampleVPC
 Tags:
 - { Key: Name, Value: Public Route Table }
 PublicInternetRoute:
 Type: AWS::EC2::Route
 DependsOn: IGWAttachment
 Properties:
 RouteTableId: !Ref PublicRouteTable
 GatewayId: !Ref ExampleIGW
 DestinationCidrBlock: "0.0.0.0/0"
 RouteAssociationPublicA:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PublicRouteTable
 SubnetId: !Ref PublicSubnetA
 RouteAssociationPublicB:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PublicRouteTable
 SubnetId: !Ref PublicSubnetB

We'll create the private route table in a similar fashion. Since the private subnet is7.
isolated from the Internet, we won't add a route to the Internet gateway. Note
that if you were to follow the NAT gateway recipe in this book, it will require a
route table as an input parameter—this is the route table you want to add NAT
routes to:

 # Private Route Table
 # We don't add any entries to this route table because there is
 no NAT gateway
 # However a route for VPC bound traffic will automatically be added
 PrivateRouteTable:
 Type: AWS::EC2::RouteTable
 Properties:
 VpcId: !Ref ExampleVPC
 Tags:

Networking

[231]

 - { Key: Name, Value: Private Route Table }
 PrivateSubnetAssociationA:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PrivateRouteTable
 SubnetId: !Ref PrivateSubnetA
 PrivateSubnetAssociationB:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PrivateRouteTable
 SubnetId: !Ref PrivateSubnetB

We can now focus on the security aspects of our network. Let's focus on the8.
public subnets. These are the subnets you'll add your load balancers to; you'll
also add things such as bastion boxes and NAT gateways. So we need to add a
Network ACL (NACL) with several entries:

Allow outbound traffic to all ports. Outbound access is unrestricted
from hosts in our public subnets.
Allow inbound traffic to ephemeral ports (above 1024). This ensures
that packets returned to us from our outbound connections are not
dropped.
Allow inbound access to low port numbers for SSH, HTTP, and HTTPS
(22, 80, and 443):

 # Public NACL
 PublicNACL:
 Type: AWS::EC2::NetworkAcl
 Properties:
 VpcId: !Ref ExampleVPC
 Tags:
 - { Key: Name, Value: Example Public NACL }
 # Allow outbound to everywhere
 NACLRulePublicEgressAllowAll:
 Type: AWS::EC2::NetworkAclEntry
 Properties:
 CidrBlock: "0.0.0.0/0"
 Egress: true
 Protocol: 6
 PortRange: { From: 1, To: 65535 }
 RuleAction: allow
 RuleNumber: 100
 NetworkAclId: !Ref PublicNACL
 # Allow outbound to VPC on all protocols
 NACLRulePublicEgressAllowAllToVPC:
 Type: AWS::EC2::NetworkAclEntry
 Properties:

Networking

[232]

 CidrBlock: !Ref VPCCIDR
 Egress: true
 Protocol: -1
 RuleAction: allow
 RuleNumber: 200
 NetworkAclId: !Ref PublicNACL
 # Allow inbound from everywhere to ephemeral ports
 (above 1024)
 NACLRulePublicIngressAllowEphemeral:
 Type: AWS::EC2::NetworkAclEntry
 Properties:
 CidrBlock: "0.0.0.0/0"
 Protocol: 6
 PortRange: { From: 1024, To: 65535 }
 RuleAction: allow
 RuleNumber: 100
 NetworkAclId: !Ref PublicNACL
 # Allow inbound from everywhere on port 22 for SSH
 NACLRulePublicIngressAllowSSH:
 Type: AWS::EC2::NetworkAclEntry
 Properties:
 CidrBlock: "0.0.0.0/0"
 Protocol: 6
 PortRange: { From: 22, To: 22 }
 RuleAction: allow
 RuleNumber: 200
 NetworkAclId: !Ref PublicNACL
 # Allow inbound from everywhere on port 443 for HTTPS
 NACLRulePublicIngressAllowHTTPS:
 Type: AWS::EC2::NetworkAclEntry
 Properties:
 CidrBlock: "0.0.0.0/0"
 Protocol: 6
 PortRange: { From: 443, To: 443 }
 RuleAction: allow
 RuleNumber: 300
 NetworkAclId: !Ref PublicNACL
 # Allow inbound from everywhere on port 80 for HTTP
 NACLRulePublicIngressAllowHTTP:
 Type: AWS::EC2::NetworkAclEntry
 Properties:
 CidrBlock: "0.0.0.0/0"
 Protocol: 6
 PortRange: { From: 80, To: 80 }
 RuleAction: allow
 RuleNumber: 400
 NetworkAclId: !Ref PublicNACL
 # Allow inbound from VPC on all protocols

Networking

[233]

 NACLRulePublicIngressAllowFromVPC:
 Type: AWS::EC2::NetworkAclEntry
 Properties:
 CidrBlock: !Ref VPCCIDR
 Protocol: -1
 RuleAction: allow
 RuleNumber: 500
 NetworkAclId: !Ref PublicNACL
 NACLAssociationPublicSubnetA:
 Type: AWS::EC2::SubnetNetworkAclAssociation
 Properties:
 NetworkAclId: !Ref PublicNACL
 SubnetId: !Ref PublicSubnetA
 NACLAssociationPublicSubnetB:
 Type: AWS::EC2::SubnetNetworkAclAssociation
 Properties:
 NetworkAclId: !Ref PublicNACL
 SubnetId: !Ref PublicSubnetB

We need to do the same for our private subnets. These subnets are somewhat9.
easier to deal with. They should only be allowed to talk to hosts within our VPC,
so we just need to add some NACLs allowing inbound and outbound traffic to
our VPCs IP range:

 # Private NACL
 PrivateNACL:
 Type: AWS::EC2::NetworkAcl
 Properties:
 VpcId: !Ref ExampleVPC
 Tags:
 - { Key: Name, Value: Example Private NACL }
 # Allow all protocols from VPC range
 NACLRulePrivateIngressAllowVPC:
 Type: AWS::EC2::NetworkAclEntry
 Properties:
 CidrBlock: !Ref VPCCIDR
 Protocol: -1
 RuleAction: allow
 RuleNumber: 100
 NetworkAclId: !Ref PrivateNACL
 # Allow TCP responses from everywhere
 NACLRulePrivateIngressAllowEphemeral:
 Type: AWS::EC2::NetworkAclEntry
 Properties:
 CidrBlock: "0.0.0.0/0"
 Protocol: 6
 PortRange: { From: 1024, To: 65535 }

Networking

[234]

 RuleAction: allow
 RuleNumber: 200
 NetworkAclId: !Ref PrivateNACL
 # Allow outbound traffic to everywhere, all protocols
 NACLRulePrivateEgressAllowVPC:
 Type: AWS::EC2::NetworkAclEntry
 Properties:
 CidrBlock: "0.0.0.0/0"
 Egress: true
 Protocol: -1
 RuleAction: allow
 RuleNumber: 100
 NetworkAclId: !Ref PrivateNACL
 NACLAssociationPrivateSubnetA:
 Type: AWS::EC2::SubnetNetworkAclAssociation
 Properties:
 NetworkAclId: !Ref PrivateNACL
 SubnetId: !Ref PrivateSubnetA
 NACLAssociationPrivateSubnetB:
 Type: AWS::EC2::SubnetNetworkAclAssociation
 Properties:
 NetworkAclId: !Ref PrivateNACL
 SubnetId: !Ref PrivateSubnetB

Finally, we'll add some Outputs to our template. These outputs are usually10.
candidates for feeding into other templates or components of automation:

 Outputs:
 ExampleVPC:
 Value: !Ref ExampleVPC
 PublicSubnetA:
 Value: !Ref PublicSubnetA
 PublicSubnetB:
 Value: !Ref PublicSubnetB
 PrivateRouteTable:
 Value: !Ref PrivateRouteTable
 PublicRouteTable:
 Value: !Ref PublicRouteTable
 PrivateSubnetA:
 Value: !Ref PrivateSubnetA
 PrivateSubnetB:
 Value: !Ref PrivateSubnetB

Networking

[235]

You can go ahead and create your VPC in the web console or via the CLI using11.
the following command:

 aws cloudformation create-stack \
 --stack-name secure-vpc \
 --template-body file://07-building-a-secure-network.yaml \
 --parameters \
 ParameterKey=AvailabilityZone1,ParameterValue=<az-1> \
 ParameterKey=AvailabilityZone2,ParameterValue=<az-2>

How it works...
When you run this template, AWS will go ahead and create an isolated, secure network just
for you. While it contains a number of resources and concepts which will be familiar to
network administrators, it's essentially an empty shell, which you can now go ahead and
populate.

For example, each VPC contains a virtual router. You can't see it and you can't log into it to
perform any special configuration, but you can customize its behavior by modifying the
route tables in this template.

The NACLs we've deployed are not stateful and should not be considered a substitution for
security groups. NACLs are complementary to security groups, which are stateful and
frankly much easier to change and manage than NACLs. While the NACLs in our recipe
allow everywhere (0.0.0.0/0) to make inbound connections to port 22, for example, you'll
want to use security groups to lock this down to a specific IP range (your corporate data
center, for example).

There's more...
Actually, there's a lot more. Despite the amount of code in this recipe, we've really only
covered the basics of what's possible with VPCs and networking in AWS. Here are some of
the main VPC topics you'll encounter as you progress with your VPC usage:

Direct Connect: This is a method of connecting your DC to your VPC using a
private, dedicated pipe. Doing this often provides better network performance,
and may also be cheaper than a VPN connection over the Internet.
Virtual Private Gateway (VPN): You can configure your VPC to connect to your
corporate DC over the Internet via VPN. This requires that you run supported
VPN hardware in your DC.
IPv6 support was added recently. We've left it out to keep things simple.

Networking

[236]

VPC endpoints: This feature exposes AWS endpoints inside your VPC so that
you don't have to route traffic over public Internet to consume them. Only S3 is
supported at the time of writing.
VPC peering: You can peer a VPC to one or more VPCs so that (unencrypted)
traffic can flow between them. The IP ranges must not clash and, while the
peering is free, you will still need to pay for traffic between VPCs. Transitive
peering isn't supported, so if you need traffic to traverse VPCs you'll require a
VPN/routing appliance of some kind. Cross-account VPC peering is supported
(we use this feature quite often), but cross-region peering isn't yet available.
VPC sizing:

IPv4: You can deploy networks between sizes /28 and /16.
IPv6: Your VPCs will be fixed in size at /56.
Once your VPC has been deployed you can't change its size. If you
run out of IP space, your only option is to deploy a larger VPC and
migrate everything (ouch!), or you can perhaps mitigate your
problem with VPC peering.

VPC flow-logs: You will want to enable VPC flow-logs in order to monitor traffic
and do any kind of network debugging.
Multicast traffic isn't supported.
Subnets must reside in a single availability zone; they can't span Availability
Zones.
Elastic Load Balancers (ELBs) can scale out to use a lot of private IP addresses if
you are sending a large amount of traffic through them. Keep this in mind when
you're sizing your subnets.
The number of VPCs you can deploy is limited to five per region, per account.
You can request to increase this limit if necessary. Internet gateways have the
same limit, and increasing one limit increases the other.
The default VPC:

First and foremost, the default VPC is created automatically for
you when you create your account. It has some different properties
and behaviors to the VPCs you create for yourself.
If you try to launch an EC2 instance without specifying a subnet
ID, AWS will attempt to launch it in your default VPC.

Networking

[237]

It consists of only public subnets. These subnets are configured to
provide a public IP address to all instances by default.
It's possible to delete the default VPC in a region. If you do this by
mistake, or have simply decided that you'd like to undo this action,
you'll need to log a support ticket with AWS to have them create a
new one for you.

See also...
The Creating a NAT gateway recipe

Creating a NAT gateway
Unless required, your instances should not be publicly exposed to the Internet. When your
instances are on the Internet, you have to assume they will be attacked at some stage.

This means most of your workloads should run on instances in private subnets. Private
subnets are those that are not connected directly to the Internet.

In order to give your private instances access to the Internet, you use network address
translation (NAT). A NAT gateway allows your instances to initiate a connection to the
Internet, without allowing connections from the Internet.

Getting ready
For this recipe, you must have the following existing resources:

A VPC with an Internet gateway (IGW)
A public subnet
A private subnet route table

You will need the IDs for the public subnet and private subnet route table. Both of these
resources should be in the same AZ.

Networking

[238]

How to do it...
Start with the usual CloudFormation template version and description:1.

 AWSTemplateFormatVersion: "2010-09-09"
 Description: Create NAT Gateway and associated route.

The template must take the following required parameters:2.

 Parameters:
 PublicSubnetId:
 Description: Public Subnet ID to add the NAT Gateway to
 Type: AWS::EC2::Subnet::Id
 RouteTableId:
 Description: The private subnet route table to add the NAT
 Gateway route to
 Type: String

In the Resources section, define an Elastic IP (EIP) that will be assigned to the3.
NAT gateway:

 Resources:
 EIP:
 Type: AWS::EC2::EIP
 Properties:
 Domain: vpc

Create the NAT gateway resource, assigning it the EIP you just defined in the4.
public subnet:

 NatGateway:
 Type: AWS::EC2::NatGateway
 Properties:
 AllocationId: !GetAtt EIP.AllocationId
 SubnetId: !Ref PublicSubnetId

Finally, define the route to the NAT gateway and associate it with the private5.
subnet's route table:

 Route:
 Type: AWS::EC2::Route
 Properties:
 RouteTableId: !Ref RouteTableId
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId: !Ref NatGateway

Networking

[239]

Save the template with a known filename; for example, 07-nat-gateway.yaml.6.
Launch the template with the following CLI command:7.

 aws cloudformation create-stack \
 --stack-name nat-gateway \
 --template-body file://07-nat-gateway.yaml \
 --parameters \
 ParameterKey=RouteTableId,ParameterValue=<route-table-id> \
 ParameterKey=PublicSubnetId,ParameterValue=<public-subnet-id>

How it works...
The parameters required for this recipe are as follows:

A public subnet ID
A private subnet route table ID

The public subnet ID is needed to host the NAT gateway, which must have Internet access.
The private subnet route table will be updated with a route to the NAT gateway.

Using the AWS NAT gateway service means that AWS takes care of hosting and securing
the service for you. The service will be hosted redundantly in a single AZ.

You can use this recipe multiple times to deploy NAT gateways in each of
your private subnets. Just make sure the public subnet and the private
subnet are in the same AZ.

In the unlikely (but possible) event of an AZ outage, you should deploy a NAT gateway per
subnet. This means that if one NAT gateway goes offline, instances in the other AZ can
continue to access the Internet as normal. You are deploying your application in multiple
subnets, aren't you?

This recipe will only work if you have created your own private subnets, as the default
subnets in a new AWS account are all public. Instances in a public subnet have direct access
to the Internet (via an IGW), so they do not need a NAT gateway.

See also
The Building a secure network recipe

Networking

[240]

Canary deployment via DNS
Canary deployment is a popular deployment method in the cloud. It allows you to deploy
new versions of your resources alongside your old resources, gradually and selectively
directing parts of your traffic to the new resource.

By directing a small portion of your traffic to your new resources, you can get valuable real-
world data and metrics. This means you don't need to engage in a big bang
deployment—where you switch over all of your traffic at once.

It also gives you more flexibility in terms of troubleshooting and monitoring; if you see
errors for your new resources, you can redirect the traffic back to your old resources while
you investigate.

In this recipe, we will create the resources necessary to do a DNS-based canary deployment,
and cut traffic from one resource to another (that is, old to new).

Getting ready
This recipe requires a few things to be in place:

A Route 53 hosted zone for your domain suffix
Existing DNS records for your old and new resources/endpoints

How to do it...
In a new file, define the template version and description:1.

 AWSTemplateFormatVersion: "2010-09-09"
 Description: Create a weighted DNS setup for canary deployments.

Start the Parameters section and the required parameters:2.

 Parameters:
 HostedZoneName:
 Type: String
 Description: The hosted zone to create records in

 DomainName:
 Type: String
 Description: The domain name to create in the hosted zone

Networking

[241]

 OldResource:
 Type: String
 Description: The older resource domain name

 NewResource:
 Type: String
 Description: The newer resource domain name

Include the optional parameters (such as those with defaults) in the Parameters3.
section:

 OldWeight:
 Type: Number
 Default: 1
 Description: The ratio of requests to send to the older endpoint

 NewWeight:
 Type: Number
 Default: 0
 Description: The ratio of requests to send to the newer endpoint

Start the Resources section of the template, and define your record set group:4.

 Resources:
 RecordSetGroup:
 Type: AWS::Route53::RecordSetGroup
 Properties:
 HostedZoneName: !Ref HostedZoneName
 Comment: Canary deployment record set group
 RecordSets:
 - Name: !Join [".", [Ref: DomainName, Ref:
 HostedZoneName]]
 Type: CNAME
 TTL: "300"
 SetIdentifier: Old
 Weight: !Ref OldWeight
 ResourceRecords:
 - !Ref OldResource
 - Name: !Join [".", [Ref: DomainName, Ref:
 HostedZoneName]]
 Type: CNAME
 TTL: "300"
 SetIdentifier: New
 Weight: !Ref NewWeight
 ResourceRecords:
 - !Ref NewResource

Networking

[242]

Save the template with a known filename; for example, 07-canary-5.
deployments.yaml.
Launch the template with the following CLI command:6.

 aws cloudformation create-stack \
 --stack-name canary \
 --template-body file://07-canary-deployments.yaml \
 --parameters \
 ParameterKey=DomainName,ParameterValue=<your-domain-name> \
 ParameterKey=OldResource,ParameterValue=<old-resource-dns> \
 ParameterKey=NewResource,ParameterValue=<new-resource-dns> \
 ParameterKey=HostedZoneName,ParameterValue=<your-hosted-zone>

When ready, update the stack to change (just) the domain weighting with the7.
following CLI command:

 aws cloudformation update-stack \
 --stack-name canary \
 --parameters \
 ParameterKey=HostedZoneName,UsePreviousValue=true \
 ParameterKey=DomainName,UsePreviousValue=true \
 ParameterKey=OldResource,UsePreviousValue=true \
 ParameterKey=NewResource,UsePreviousValue=true \
 ParameterKey=OldWeight,ParameterValue=0 \
 ParameterKey=NewWeight,ParameterValue=1 \
 --use-previous-template

How it works...
This template focuses on utilizing the features of a Route 53 record set group, and the most
useful properties have been parameterized.

The value for your DomainName parameter will be created as multiple CNAME records in
your hosted zone (as set in HostedZoneName), one for each of your resources, old and new.

The OldResource and NewResource parameters represent the target domain names that
the incoming requests will be shared between.

Once the stack is deployed, you will be able to go to your domain name and see your old
resource. By default, this template will send all traffic to the old resource endpoint.

Once you've verified the setup is working correctly, you can start to deploy by updating the
stack to send some of your requests to the new resource.

Networking

[243]

Changing the resource record set's weightings via the CLI is quite involved, as it requires
passing a complex JSON object as an argument. It is much simpler and safer to simply
update the existing CloudFormation stack you deployed, changing just the weighting
parameters that are already present.

With the update-stack command, the new weightings will be propagated to your record
set group members (without interruption) and the new distribution of traffic will start
taking effect.

For the parameters without default values, you must explicitly tell CloudFormation to use
the previous values, as well as the template body supplied previously.

Remember that the distribution will be determined by the target's weight divided by the
total weight value of all targets. This means you can easily turn off a target by setting its
weight to 0, regardless of the other weight values. In this recipe, we have used 0 and 1 as
simple values to illustrate the impact, but you can (and should) use more fine-grained
parameters.

Hosting a domain
In this recipe, we'll show you how to host a domain in Route 53 and add some records to it:

Hosting a domain

Networking

[244]

Getting ready
You technically don't need to have registered a domain name in order to proceed with this
recipe, but it sure helps if you have a real domain that you can use.

How to do it...
Create a new CloudFormation template and add the following Parameter to it:1.

 Parameters:
 DomainName:
 Description: Your domain name (example.org)
 Type: String

Next we need to add a HostedZone resource to our template, as follows:2.

 Resources:
 DNSHostedZone:
 Type: AWS::Route53::HostedZone
 Properties:
 Name: !Ref DomainName

You're now ready to go ahead and create your hosted zone in Route 53. You can3.
do so via the CloudFormation web console, or use the following CLI command:

 aws cloudformation create-stack \
 --stack-name example-hosted-zone \
 --template-body file://07-hosting-a-domain.yaml \
 --parameters \
 ParameterKey=DomainName,ParameterValue=<your-domain-name>

Networking

[245]

How it works...
This will create a hosted zone in Route 53. Once the stack has finished creating, go and find
it in the web console. You'll see that there are a number of name servers associated with it.
These are the name servers to use if you wish to proceed with delegating your domain
name to AWS's Route 53 servers using your domain name registrar's control panel.

There's more...
A hosted zone with no DNS records will be of limited use to you. Here are some examples
of records that you may wish to add to your template:

 DNSRecords:
 Type: AWS::Route53::RecordSetGroup
 Properties:
 HostedZoneId:
 Ref: DNSHostedZone
 RecordSets:
 - Name: !Ref DomainName
 Type: A
 TTL: 60
 ResourceRecords:
 - "127.0.0.1"
 - Name: !Ref DomainName
 Type: MX
 TTL: 60
 ResourceRecords:
 - "10 smtp.example.org"
 - "20 smtp.example.org"
 - Name: !Ref DomainName
 Type: TXT
 TTL: 60
 ResourceRecords:
 - '"v=spf1 include:spf.example.org ?all"'

Networking

[246]

Some items of note:
For the priority in MX records, add the number at the start of the record
followed by a space.
For TXT records such as spf entries, which are typically required to be
quoted, you can surround double quotes with single quotes.

Here's how they look in the Route 53 web console:

Hosting a domain

See also...
The Hosting a static website recipe in Chapter 3, Storage and Content Delivery

Networking

[247]

Routing based on location with failover
In this recipe, we're going to show you two Route 53 routing policies:

Geolocation routing
Failover routing

In fact, we're actually going to combine these two policies together. A perusal of the AWS
documentation might lead you to believe that this isn't particularly common practice, but
understand that by combining routing policies, you can do great things for your
performance and availability.

Getting ready
Given that we're demonstrating a failover task, you'll want to set up two ELBs before we
proceed. We're going to assume you're doing this in different regions, but this isn't strictly
necessary. These ELBs will need to accept HTTP connections (on port 80 of course) and
have at least one instance attached to them (which is passing its health check and serving
content).

The Creating security groups recipe in Chapter 4, Using AWS Compute
deployed in two different regions, should fit the bill nicely.

You'll also need a domain name that you'd like to create as a new hosted zone in Route 53.
You technically don't need to delegate this domain to Route 53 from your registrar, so you
can complete this recipe with any domain you choose. Just remember that using a real
domain you can delegate to Route 53, which will save you messing with your localhost's file
or DNS setup in order to test this recipe.

In summary, you'll need the following:

The DNS names for both ELBs
The hosted zone IDs for both ELBs
A domain name of your choosing

Networking

[248]

How to do it...
Go ahead and create a new CloudFormation template. We'll add some1.
Parameters for the items we've mentioned previously:

 Parameters:
 DomainName:
 Description: Your domain name (example.org)
 Type: String
 LoadBalancerDNSNameRegionA:
 Description: The DNS name of your ELB in region A
 Type: String
 LoadBalancerHostedZoneRegionA:
 Description: The Hosted Zone ID of your ELB in region A
 Type: String
 LoadBalancerDNSNameRegionB:
 Description: The DNS name of your ELB in region B
 Type: String
 LoadBalancerHostedZoneRegionB:
 Description: The Hosted Zone ID of your ELB in region B
 Type: String

The first Resource we want is the HostedZone resource for our domain name.2.
Add it to your template as follows:

 Resources:
 DNSHostedZone:
 Type: AWS::Route53::HostedZone
 Properties:
 Name: !Ref DomainName

In order to have failover happen automatically, we're going to need to set up3.
some health checks. We want health checks on the ELBs in both regions:

 RegionAHealthCheck:
 Type: AWS::Route53::HealthCheck
 Properties:
 HealthCheckConfig:
 FailureThreshold: 3
 FullyQualifiedDomainName: !Ref LoadBalancerDNSNameRegionA
 Port: 80
 RequestInterval: 30
 ResourcePath: "/"
 Type: HTTP
 HealthCheckTags:
 - { Key: Name, Value: Region A Health Check }

Networking

[249]

 RegionBHealthCheck:
 Type: AWS::Route53::HealthCheck
 Properties:
 HealthCheckConfig:
 FailureThreshold: 3
 FullyQualifiedDomainName: !Ref LoadBalancerDNSNameRegionB
 Port: 80
 RequestInterval: 30
 ResourcePath: "/"
 Type: HTTP
 HealthCheckTags:
 - { Key: Name, Value: Region B Health Check }

We're now going to create four record sets for your domain:4.
a.<your-domain>-PRIMARY

b.<your-domain>-PRIMARY

a.<your-domain>-SECONDARY (failover to b)
b.<your-domain>-SECONDARY (failover to a)

These records correspond to ELB A and ELB B (or site A and B, if that term makes5.
more sense to you), and they will allow each region to fail over to the other if the
health check fails.
Let's start with the primary records for both ELBs:6.

 RegionAPrimary:
 Type: AWS::Route53::RecordSet
 Properties:
 Name: !Join [., [a, Ref: DomainName]]
 Type: A
 HostedZoneId: !Ref DNSHostedZone
 AliasTarget:
 HostedZoneId: !Ref LoadBalancerHostedZoneRegionA
 DNSName: !Ref LoadBalancerDNSNameRegionA
 Failover: PRIMARY
 SetIdentifier: primary-region-a
 HealthCheckId: !Ref RegionAHealthCheck
 RegionBPrimary:
 Type: AWS::Route53::RecordSet
 Properties:
 Name: !Join [., [b, Ref: DomainName]]
 Type: A
 HostedZoneId: !Ref DNSHostedZone
 AliasTarget:
 HostedZoneId: !Ref LoadBalancerHostedZoneRegionB
 DNSName: !Ref LoadBalancerDNSNameRegionB

Networking

[250]

 Failover: PRIMARY
 SetIdentifier: primary-region-b
 HealthCheckId: !Ref RegionBHealthCheck

Now add the secondary (failover) records:7.

 RegionAFailover:
 Type: AWS::Route53::RecordSet
 Properties:
 Name: !Join [., [a, Ref: DomainName]]
 Type: A
 HostedZoneId: !Ref DNSHostedZone
 AliasTarget:
 HostedZoneId: !Ref LoadBalancerHostedZoneRegionB
 DNSName: !Ref LoadBalancerDNSNameRegionB
 Failover: SECONDARY
 SetIdentifier: secondary-region-a
 RegionBFailover:
 Type: AWS::Route53::RecordSet
 Properties:
 Name: !Join [., [b, Ref: DomainName]]
 Type: A
 HostedZoneId: !Ref DNSHostedZone
 AliasTarget:
 HostedZoneId: !Ref LoadBalancerHostedZoneRegionA
 DNSName: !Ref LoadBalancerDNSNameRegionA
 Failover: SECONDARY
 SetIdentifier: secondary-region-b

Now we're going to add the root/apex record for our domain. For the purposes of8.
this recipe, we're going to send requests originating from North America to
region/ELB A, and requests from the rest of the world to region/ELB B:

 NorthAmericaGeolocation:
 Type: AWS::Route53::RecordSet
 Properties:
 Name: !Ref DomainName
 Type: A
 HostedZoneId: !Ref DNSHostedZone
 AliasTarget:
 HostedZoneId: !Ref DNSHostedZone
 DNSName: !Join [., [a, Ref: DomainName]]
 GeoLocation:
 ContinentCode: NA # North America
 SetIdentifier: geolocation-region-a
 RestOfWorldGeolocation:
 Type: AWS::Route53::RecordSet
 Properties:

Networking

[251]

 Name: !Ref DomainName
 Type: A
 HostedZoneId: !Ref DNSHostedZone
 AliasTarget:
 HostedZoneId: !Ref DNSHostedZone
 DNSName: !Join [., [b, Ref: DomainName]]
 GeoLocation:
 CountryCode: "*" # Rest of world
 SetIdentifier: geolocation-region-b

That's it! You can now run this CloudFormation template in the AWS web9.
console or via the CLI, as follows:

 aws cloudformation create-stack \
 --stack-name geolocation-failover \
 --template-body file://07-routing-based-on-location.yaml \
 --parameters \
 ParameterKey=DomainName,ParameterValue=gitrepository.com \
 ParameterKey=LoadBalancerDNSNameRegionA,ParameterValue=<elb-a> \
 ParameterKey=LoadBalancerHostedZoneRegionA, \
 ParameterValue=<elb-zoneid-a> \
 ParameterKey=LoadBalancerDNSNameRegionB,ParameterValue=<elb-b> \
 ParameterKey=LoadBalancerHostedZoneRegionB, \
 ParameterValue=<elb-zoneid-b>

Networking

[252]

How it works...
We've effectively constructed a small decision tree, as follows:

Route 53 flow

In order to test this for yourself, you'll need to have some way of performing DNS
responses from other regions. In the following screenshots, we have provisioned a machine
using AWS workspaces in North America (left), while our actual location is in Australia
(right).

Networking

[253]

Normal operation (geolocation routing)
Under normal operation, our North American user (left) will connect to region A, which, for
practical reasons, we've deployed in us-east-1, although it could be in any region. Our
Australian user (right) will connect to region B, which is the region we've designated as
being for the rest of the world. Again, for practical reasons, we deployed this site to the ap-
southeast-2 region:

Left: Region A served to North American user. Right: Region B served to Australian user.

Region A failure
To simulate a failure of region A, we'll simply stop the web server, which is attached to the
ELB as follows:

 [root@ip-172-30-0-153 ec2-user]# service nginx stop
Stopping nginx: [OK]

Networking

[254]

After a short period, the web console will show that the health check for region A is failing:

Region A failing health check

Our North American user (left) now sees region B instead:

Left: Region B served to North American users due to failover. Right: Region B served to Australian users as normal.

Networking

[255]

Region B failure
We'll now flip the script and simulate the same scenario in region B. This time, the web
server in this region is stopped, but the server in region A is healthy:

Region B failing health check

Networking

[256]

Region A content will now be shown to both North American users and those designated as
the rest of the world (including Australia):

Left: Region A served to North American users as normal. Right: Region A served to Australian users due to failover.

There's more...
Route 53 offers a couple of other useful routing policies, so you should have a think about
which best suits you:

Latency-based routing: This policy makes the Route 53 DNS servers respond to
you with IP addresses that provide the lowest latency. This will not necessarily be
the endpoint geographically closest to you.
Weighted routing: This allows you to divvy up your traffic between endpoints
based on a weighting system. You might have a 50/50 split between two regions,
or you may elect to have a 90/10 ratio instead.

Networking

[257]

See also...
The Hosting a static website recipe in Chapter 3, Storage and Content Delivery
The Creating security groups recipe in Chapter 4, Using AWS Compute

Network logging and troubleshooting
One of the benefits of using virtualized infrastructure is that you can get a level of
introspection that is difficult or costly with physical hardware. Being able to quickly switch
on logging at a network-device level is an extremely useful feature, especially when getting
used to the interactions between VPCs, subnets, NACLs, routing, and security groups.

In this recipe, we will turn on logging for our network resources. You could do this all the
time, to give yourself another layer for monitoring and auditing, or you could selectively
enable it during troubleshooting, saving yourself any additional datastorage charges.

Getting ready
For this recipe, you must have a VPC to log activity on.

How to do it...
Start by defining the template version and description:1.

 AWSTemplateFormatVersion: "2010-09-09"
 Description: Flow logs for networking resources

Define the Parameters for the template. In this case, it is just the VpcId to turn2.
logging on for:

 Parameters:
 VpcId:
 Type: String
 Description: The VPC to create flow logs for

Networking

[258]

Create the Resources section of the template and define the log group to use to3.
send our flow-logs to:

 Resources:
 LogGroup:
 Type: AWS::Logs::LogGroup
 DeletionPolicy: Delete
 Properties:
 LogGroupName: LogGroup

Next we define the IAM role that will give the flow-logs service permission to4.
write the logs:

 IamRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Effect: Allow
 Principal:
 Service: vpc-flow-logs.amazonaws.com
 Action: sts:AssumeRole
 Policies:
 -
 PolicyName: CloudWatchLogsAccess
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Action:
 - logs:CreateLogGroup
 - logs:CreateLogStream
 - logs:PutLogEvents
 - logs:DescribeLogGroups
 - logs:DescribeLogStreams
 Effect: Allow
 Resource: "*"

Finally, we define the flow-log itself:5.

 FlowLog:
 Type: AWS::EC2::FlowLog
 DependsOn: LogGroup
 Properties:
 DeliverLogsPermissionArn: !GetAtt IamRole.Arn

Networking

[259]

 LogGroupName: LogGroup
 ResourceId: !Ref VpcId
 ResourceType: VPC
 TrafficType: ALL

Save the template, and give it a known filename such as 07-flow-logs.yaml.6.

Create the flow-logs and associated resources by creating the template with the7.
following command:

 aws cloudformation create-stack \
 --stack-name VpcFlowLogs \
 --template-body file://07-flow-logs.yml \
 --capabilities CAPABILITY_IAM \
 --parameters ParameterKey=VpcId,ParameterValue=<your-vpc-id>

Once launched (and assuming you have network activity), you will be able to see8.
your flow-log in the CloudWatch logs console.

How it works...
The only parameter required for this template is the VPC ID to target. We specifically target
a VPC to turn on flow-logging for, because it gives us the most bang for buck. While you can
enable flow-logs for subnets and Elastic Network Interfaces (ENIs) individually, if you
enable them on a VPC you get flow-logs for all the networking resources contained in that
VPC—which includes subnets and ENIs.

In the resources section, we start by explicitly defining the log group to hold the flow-logs. If
you don't create the log group yourself (and specify it in your flow-log resource
configuration), a log group will be created for you. This means that you will still be able to
use flow-logs, but the log group won't be managed by CloudFormation and will have to be
maintained (for example, deleted) manually. We have also set a deletion policy of delete for
our log group. This means it will be deleted if the CloudFormation stack is deleted, which is
fine for a demonstration such as this. If using in a real environment (such as production),
remove the DeletionPolicy property and its value.

By default, CloudWatch log groups are not deleted when the stack that
created them is deleted. This lets you retain any important logs, but it can
incur an ongoing cost.

Networking

[260]

Next we define the IAM role to use. Via the AssumeRolePropertyDocument value, we
give the AWS flow-logs service permission to assume this role. Without this access, the
flow-logs service cannot access the account. In the Policies property, we give the role
permission to create and update log groups and streams.

Finally, now that we have created the dependent resources, we define the flow-log resource
itself. You don't need to define the resources in order of dependencies, but it is usually
easier to read if you do. In the resource, we also define a DependsOn relationship to the log
group we defined earlier, so that the log group is ready to receive the flow-logs when it is
created.

The final step is to launch the template you have created, passing the VPC ID as parameter.
As this template creates an IAM role to allow the VPC service to send logs to CloudWatch
logs, the command to create the stack must be given the CAPABILITY_IAM flag to signify
that you are aware of the potential impact of launching this template.

There's more...
Turning on logging is just the start of the troubleshooting process. There are a few other
things you should be aware of when using flow-logs.

Log format
Once logging is enabled, you can view the logs in the CloudWatch logs console. Here is a
summary of the type of information you will see in the flow-log (in order):

The VPC flow-logs version
The AWS account ID
The ID of the network interface
The source IPv4 or IPv6 address
The destination IPv4 or IPv6 address
The source port of the traffic
The destination port of the traffic
The IANA protocol number of the traffic
The number of packets transferred
The number of bytes transferred
The start time of the capture window (in Unix seconds)
The end time of the capture window (in Unix seconds)

Networking

[261]

The action associated with the traffic; for example, ACCEPT or REJECT
The logging status of the flow-log; for example, OK, NODATA, or SKIPDATA

To identify the protocol, check the protocol number field against the IANA
protocol numbers list at
http://www.iana.org/assignments/protocol-numbers/protocol-number

s.xhtml.

Updates
You cannot update the configuration of an existing flow-log; you must delete it and recreate
it if you want to change any settings associated. This is another reason why it is good to
explicitly create and manage the associated log group.

Omissions
Some traffic is not captured by the flow-logs service, as follows:

Traffic to the Amazon DNS server (x.x.x.2 in your allocated range)
Traffic for Amazon Windows license activation (obviously only applicable to
Windows instances)
Traffic to and from the instance metadata service (that is, IP address
169.254.169.254)
DHCP traffic
Traffic to the reserved VPC IP address for the default VPC router (x.x.x.1 in
your allocated range)

See also
The Building a secure network recipe

http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

8
Security and Identity

In this chapter, we will cover:

Federating with your AWS account
Creating SSL certificates
Active Directory as a service
Creating users
Creating instance roles
Cross-account user roles
Storing secrets

Introduction
Security is one of the most critical areas of using the cloud. It's important to get it right
because good security practices reinforce themselves, leading to a virtuous cycle of
capabilities and control.

There are many tools and AWS services to ensure that your cloud-based infrastructure is as
secure—if not more secure—than your own resources.

AWS IAM is the backbone of security in AWS. It provides incredibly granular levels of
permissions to allow (and deny) specific users access to your resources.

Security and Identity

[263]

Federating with your AWS account
This recipe will show you how to federate identities from your Active Directory and use
AD groups and IAM roles to provide different levels of access to multiple AWS accounts.

At a high level, we're going to have an AWS account that is designated as an Auth Account.
Users will log in to this account and be assigned a role. This role will have next to no
privileges because we don't want them doing anything in the Auth Account. However, they
will be able to use role switching to access another AWS account; we'll call this the App
Account.

This is a reasonably common pattern whereby users will have access to a number of AWS
accounts and use role switching to jump between them—all using credentials that are
verified against an AD backend and a level of access that is derived from AD groups.

Federation

Security and Identity

[264]

Getting ready
You'll need the following before we can proceed:

An instance of Simple AD. Refer to the Active Directory as a service recipe.
The name of an access URL, which your users will use to log in (that
is, https://bluthcorp.awsapps.com).
Two AWS accounts. One of these will be your Auth Account, the other will be
your App Account.
A Windows server in your VPC, joined to your Simple AD domain, with Remote
Server Admin Tools installed so we can manage groups and users.

If you launch the Windows server using the launch wizard, it will give
you the option of joining the domain at boot time. Note that the server will
need to be running with an instance role that will have the following two
AWS Managed Policies: AmazonEC2RoleForSSM and
AmazonSSMReadOnlyAccess.

How to do it...
This recipe is split up in to five parts:

Active Directory configuration
Auth Account policy configuration
Auth Account role configuration
Simple AD Directory configuration
App Account role configuration

https://bluthcorp.awsapps.com

Security and Identity

[265]

Active Directory configuration
Our first task will be to create the necessary groups in Active Directory:

Go ahead and create a group called AWSPowerUser, as shown in the following1.
screenshot:

Security and Identity

[266]

Do the same for the AWSReadOnly group:2.

Security and Identity

[267]

We're now going to create a couple of users. The first one is Lucille, as shown3.
in the following screenshot:

Security and Identity

[268]

The next user will be Buster. Let's add him now:4.

Security and Identity

[269]

Lucille is going to be our power user, so we'll add her to the AWSPowerUser5.
group:

Security and Identity

[270]

We don't really trust Buster at all. True to his name, he's prone to breaking6.
things. Let's add him to the AWSReadOnly group:

Security and Identity

[271]

Auth Account policy configuration
We now we need to create a policy in our Auth Account. Remember that this is the account
that the users Lucille and Buster will initially log in to when visiting the AWS console.
We actually want to give them extremely limited access to this account. In fact, the only
thing we're going to let them do is attempt to switch to a role in the application account.

Visit the IAM console in the Auth Account and create a new policy:1.

AWS refers to this type of policy as a Customer Managed Policy.

Call this policy AllowAssumeRole. Give it a description to help you remember2.
what it's for. Then apply the following policy document. You are going to want to
make sure the account number of the App Account is added to your policy:

 {
 "Version": "2012-10-17",
 "Statement": [
 {

Security and Identity

[272]

 "Sid": "Stmt1487396837000",
 "Effect": "Allow",
 "Action": [
 "sts:AssumeRole"
],
 "Resource": [
 "arn:aws:iam::<app-acct-number>:role/*"
]
 }
]
 }

Auth Account policy config

Security and Identity

[273]

Auth Account role configuration
Now we're going to create two roles. These roles will correspond to the groups we defined
in Active Directory:

AWSPowerUser: CanAssumePowerUser
AWSReadOnly: CanAssumeReadOnly

Start by creating the CanAssumePowerUser role first:1.

Security and Identity

[274]

We want this role to be an AWS Directory Service role, so be sure to select it2.
before proceeding:

Security and Identity

[275]

Attach the AllowAssumeRole policy we have already created to this role:3.

Hint: You can filter the roles using the search box to make finding them
easier.

Security and Identity

[276]

Click Create Role to confirm:4.

Security and Identity

[277]

Now go ahead and do exactly the same for the CanAssumeReadOnly role. Again,5.
attach the AllowAssumeRole policy we created earlier:

Security and Identity

[278]

Simple AD configuration
We now need to go through the process of enabling user accounts in the directory to log in
to the AWS management console.

Point your browser to the AWS Directory Service Console and edit the1.
configuration of your Simple AD directory. Enter the access URL you've chosen:

Security and Identity

[279]

We now want to enable the AWS Management Console for this service. Click on2.
it to proceed to the next step:

Security and Identity

[280]

We've already created roles and assigned a policy to them. So select Use Existing3.
Role, as shown in the following screenshot:

Security and Identity

[281]

Start with the CanAssumePowerUser role. We need to map it to the4.
AWSPowerUser group we created in AD (the one Lucille resides in):

Security and Identity

[282]

Search for AWSPowerUser and then proceed to the next step:5.

Security and Identity

[283]

You now need to repeat these steps for the CanAssumeReadOnly role. Map it to6.
the AWSReadOnly role we created in AD:

Security and Identity

[284]

App Account role configuration
It's now time to configure our application account. In it, we need to create some new roles
and then set up a trust relationship between those new roles and the roles we created in our
Auth Account:

Start by going to the IAM console in the Auth Account and creating a new role.1.
This role will be PowerUserRole:

Security and Identity

[285]

This role will be of the Role for Cross-Account Access kind. Make sure to select2.
this type:

Security and Identity

[286]

You'll be prompted to enter an AWS Account ID. This is the account ID of the3.
Auth Account:

Security and Identity

[287]

For this role, we are going to use the AWS Managed Policy for4.
PowerUserAccess, so go ahead and attach this policy now:

Security and Identity

[288]

Click Create Role on the confirmation page and we're ready for the next step:5.

Security and Identity

[289]

AWS will automatically create a trust relationship on our behalf. Unfortunately,6.
it's not quite right, so we need to edit it:

Security and Identity

[290]

We want anyone who has the CanAssumePowerUser role in our Auth Account to7.
be able to assume PowerUserRole in our App Account. So we need to make a
small change to the trust relationship like so (remember to replace the account
IDs with your own):

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::<auth-account-number>:
 role/CanAssumePowerUser"
 },
 "Action": "sts:AssumeRole"
 }
]
 }

Security and Identity

[291]

Repeat these steps by creating a role called ReadOnlyRole and attach the AWS8.
Managed ReadOnlyAccess policy to it:

Again, we want to update the trust policy. Here we're going to allow both9.
CanAssumePowerUser and CanAssumeReadOnly to switch to the
ReadOnlyRole. This will be useful for administrators who would want to avoid
accidents while clicking around the console:

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::<auth-account-number>:
 role/CanAssumeReadOnly"
 },
 "Action": "sts:AssumeRole"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::<auth-account-number>:

Security and Identity

[292]

 role/CanAssumePowerUser"
 },
 "Action": "sts:AssumeRole"
 }
]
 }

App Account role config

That was our final step. It's now time to test it out.

Security and Identity

[293]

How it works...
Visit the access URL you assigned to your Simple AD directory (for1.
example, https://bluthcorp.awsapps.com/console). Log in with the credentials
of the user Lucille so we can test out our PowerUserRole:

https://bluthcorp.awsapps.com/console

Security and Identity

[294]

If you click around the AWS console, you'll notice you don't really have access to2.
do anything at all. This is because you're currently bound by a policy that only
allows you to assume a role (in the application account). So, let's try doing that.
Click on your account name in the top-right corner and choose Switch Role:

Security and Identity

[295]

On the next page, you want to enter the account ID of the application account3.
and the role you wish to assume: PowerUserRole. Clicking Switch Role here
will log you in to the application account under PowerUserRole:

Security and Identity

[296]

You should now have an active session under PowerUserRole in the application4.
account. You'll recall that we assigned a PowerUserAccess policy to this role. So
you should be free to do almost anything in this account using the profile of the
user, Lucille (notable exceptions being IAM and organizations management). If
you click on your name again, you'll see details about which role was assigned to
you when you logged in and which role is currently active:

Security and Identity

[297]

Try switching to the ReadOnlyRole. Verify that you aren't able to create any5.
resources, perhaps by trying to create a new EC2 key pair or by creating an
empty security group:

Security and Identity

[298]

Log out and go back to the access URL for Simple AD. Sign in with the6.
credentials of the user, Buster. Again, you'll see you don't have access to do
much in the Auth Account:

Security and Identity

[299]

You should be able to switch to the ReadOnlyRole in the application account.7.
Try it now to make sure it works. You can use the Role History shortcut to avoid
typing in the account number and role name again:

Finally, try switching Buster to PowerUserRole in the application account.8.
Buster definitely shouldn't have access to it and you should see an error page
that looks like this:

Security and Identity

[300]

There's more...
Exactly the same setup can be achieved with your existing Active Directory
installation, even if it resides outside AWS in your data center. You will need to
swap out Simple AD for AD Connector:

Federation with AD Connector

Security and Identity

[301]

You can also use ADFS and SAML 2.0 to enable federation to AWS from your
existing AD installation. This would negate the need for users to log in to the
console using a *.awsapps.com domain and would also negate the need for an
Auth account.

See also
The Active Directory as a service recipe

Creating SSL certificates
SSL-based communications are now becoming the de facto standard—insecure methods are
no longer good enough.

AWS provides the AWS Certificate Manager (ACM) service to provision AWS-backed SSL
certificates that you can use with your AWS resources, such as Elastic Load Balancers
(ELBs) and CloudFront.

ACM is free to use! There's nothing to pay for the certificates themselves.
You pay for the underlying resources you use with them as normal.

How to do it...
Run the CLI command, including the domain name you want the certificate for1.
(you can use * as a wildcard):

 aws acm request-certificate --domain-name <your-domain>

Security and Identity

[302]

You can now see the request in the ACM console, but note the request is pending:2.

Security and Identity

[303]

Check your domain administration e-mail(s). You will receive a confirmation of3.
the request that will look like the following message:

Security and Identity

[304]

Once you approve the request, you will be given a confirmation message:4.

You can now see that the certificate is ready to use in the AWS ACM console:5.

Security and Identity

[305]

Use the Identifier value to apply the certificate to your resources:6.

How it works...
Using the CLI tool is the quickest and easiest way to create a certificate request. Create the
certificate in the region you plan to use it in; that is where your ELB(s) are located.

If you plan to use your certificate with CloudFront, you must create it in
the us-east-1 region.

After the request has been created, AWS will confirm the request is valid by sending
approval e-mails to various standard e-mail addresses, based on conventions and the
WHOIS information for your domain. Approval e-mails will be sent to the following:

The domain registrant
The technical contact
The administrative contact

Security and Identity

[306]

And the following addresses:
administrator@<your-domain>

hostmaster@<your-domain>

postmaster@<your-domain>

webmaster@<your-domain>

admin@<your-domain>

You must accept at least one of the approvals before you can use your certificate.

Once approved, you can use the Identifier value in the configuration of your other
resources, such as EC2 ELB(s) and CloudFront distributions.

There's more...
While ACM makes getting SSL certificates for your application trivial, there are a few
limitations to be aware of.

EC2 instances
You'll notice in the documentation that only ELBs and CloudFront are supported by ACM
certificates. You cannot put an ACM certificate directly on an EC2 instance.

While this is a limitation, in practice it's not a big issue. Generally, you wouldn't want to
expose your instances to the Internet directly—they should be behind an ELB/ALB for
security, performance, and management reasons. If you are serving static assets,
CloudFront is going to be much more secure, and performs better at a lower cost.

Importing certificates
You can import your own certificates in to ACM, so that they can be used with your ELB(s)
and CloudFront. This might be done because you have already purchased a certificate from
a third-party provider, or require a particular signing authority.

CloudFormation
You can also request certificates as part of the CloudFormation stack. This is great for
ensuring each of your resources has a specific certificate, unique to each deployment.

Security and Identity

[307]

Here is a sample snippet of CloudFormation YAML to create a certificate, similar to the
preceding example in this recipe:

Resources:
 MyCertificate:
 Type: "AWS::CertificateManager::Certificate"
 Properties:
 DomainName: <your-domain>

Active Directory as a service
This recipe will show you how to deploy an AWS Simple Active Directory (Simple AD)
service.

Simple AD is powered by Samba 4 and is a Microsoft Active Directory compatible managed
service. It will work with many applications that require Active Directory support and
provides a large range of the commonly used Active Directory features, including the
following:

User accounts
Single sign-on (Kerberos)
Group memberships
Domain joining

It also integrates with other services provided by AWS, such as the following:

AWS Management Console
WorkMail
WorkDocs
WorkSpaces and WorkSpaces Application Manager

AWS manages backup and restoration of the directory for you in the form of daily
snapshots and the ability to perform point-in-time recovery.

Features that aren't supported include the following:

Trust relationships with other AD domains
DNS dynamic updates
Schema extensions
MFA
LDAPS

Security and Identity

[308]

PowerShell AD cmdlets
Transfer of FSMO roles

The ideal scenario for Simple AD usage is when you don't require advanced AD features
and you're supporting less than 5,000 users. If either of these isn't true, you will want to
look at AWS' fully fledged Microsoft Active Directory service. Brace yourself for some
added complexity and much higher cost if you choose this path, however.

Getting ready
Before going ahead, we'll need the following pieces of info:

The FQDN for your directory (for example, http://megacorp.com/).
A password for administering your directory. This password corresponds to the
Administrator user that will be created on your behalf. Note that the password
needs to be between 8-64 characters and will also need to contain one character
from three of the following four groups:

Lowercase letters
Uppercase letters
Numbers
Non-alphanumeric characters

The ID of the VPC we're deploying to.
The IDs of two subnets in this VPC. These subnets need to be in different
Availability Zones.
The size of the directory you'd like to deploy. You can choose between Small and
Large.

A domain controller is going to be deployed in each of the two subnets you've chosen.
They'll be communicating between each other on a fairly large number of ports. Ideally,
these subnets would exist in the same tier in your VPC and by extension would not have
any NACLs which would stop the controllers from talking with each other.

If, for some reason, you're restricting traffic using NACLs within your
VPC tiers, you will want to refer to the AWS docs for a list of which ports
to allow.
For more details, visit
http://docs.aws.amazon.com/directoryservice/latest/admin-guide/p

rereq_simple.html.

http://megacorp.com/
http://docs.aws.amazon.com/directoryservice/latest/admin-guide/prereq_simple.html
http://docs.aws.amazon.com/directoryservice/latest/admin-guide/prereq_simple.html

Security and Identity

[309]

How to do it...
Create a new CloudFormation template file. We'll start by populating it with1.
Parameters that correspond to all the requirements we mentioned before:

 AWSTemplateFormatVersion: '2010-09-09'
 Parameters:
 FullyQualifiedName:
 Description: The fully qualified name for the directory
 (e.g. megacorp.com)
 Type: String
 AllowedPattern: '^([a-zA-Z0-9]+[\\.-])+([a-zA-Z0-9])+$'
 Password:
 Description: The password for the directory Administrator
 Type: String
 NoEcho: true
 VpcId:
 Description: The ID of the VPC to deploy to
 Type: AWS::EC2::VPC::Id
 SubnetIds:
 Description: Subnets where the directory will be deployed to
 (pick at least 2)
 Type: List<AWS::EC2::Subnet::Id>
 DirectorySize:
 Description: The size of the directory to deploy
 Type: String
 AllowedValues:
 - Small
 - Large

Next, we define our Resources. Even though two Simple AD domain controllers2.
are being deployed, we only need to create one resource here:

 Resources:
 ExampleDirectory:
 Type: AWS::DirectoryService::SimpleAD
 Properties:
 Name: !Ref FullyQualifiedName
 Password: !Ref Password
 Size: !Ref DirectorySize
 VpcSettings:
 SubnetIds:
 - !Select [0, Ref: SubnetIds]
 - !Select [1, Ref: SubnetIds]
 VpcId: !Ref VpcId

Security and Identity

[310]

You can now go ahead and run this template in the CloudFormation web console,3.
or via the CLI like this:

 aws cloudformation create-stack \
 --stack-name example-directory \
 --template-body file://08-active-directory-as-a-service.yaml \
 --parameters \
 ParameterKey=FullyQualifiedName,ParameterValue=<fqdn> \
 ParameterKey=Password,ParameterValue=<password> \
 ParameterKey=VpcId,ParameterValue=<vpd-id> \
 "ParameterKey=SubnetIds,ParameterValue='<subnet-1>,<subnet-2>'" \
 ParameterKey=DirectorySize,ParameterValue=<Small/Large>

How it works...
It will take several minutes to create the directory. Once the Status becomes Active, you
may proceed with further setup and integration tasks. Your directory listing page will
eventually show a directory listing that looks similar to this:

Security and Identity

[311]

Clicking on the directory ID will reveal more detailed information about your directory, like
so:

There's more...
The password for the Administrator account can't be retrieved or reset. Be sure
to keep this password somewhere safe.
You may notice an additional security group appear in your EC2 console. This
group is necessary for the directory controllers (although you won't see these
appear as EC2 instances in your console).
The directory will contain an account with the prefix AWSAdminD-. This account
is necessary for AWS to perform maintenance tasks such as backup and FSMO
role transfers. Removing this account or changing its password is almost certainly
a bad idea.

Security and Identity

[312]

See also
The Building a secure network recipe in Chapter 7, Networking.

Creating users
Before we introduce this recipe, we need to talk briefly about Identity and Access
Management (IAM). It's free and is enabled on every account. It allows you to create
groups and users and allows you to control exactly what they can and can't do using policy
assignment.

By default, groups and users will have no permissions until you assign them either an AWS
Managed Policy or a Customer Managed Policy (one which you manage). You'll want to use
AWS Managed Policies as much as possible to avoid having to create and maintain your
own.

There's a third kind of policy called an Inline Policy. Use this sparingly. In
fact, the only time we typically see it is in CloudFormation templates.

You pretty much never want to assign a policy directly to a user. If you go down this path,
you'll create a lot of work for yourself in the future. Instead, you want to apply policies to
groups and then assign users to those groups. Fortunately, it's a pretty easy process and
we're about to walk you through it.

The IAM dashboard provides a URL that your IAM users can use to log in to the web
console (if you've assigned them a password and given them access to do so). You can also
customize this IAM sign-in link if necessary. Don't forget to give this URL to any IAM users
you create so they know where to go to sign in.

It will look something like this until you customize it:

https://<account-id>.signin.aws.amazon.com/console

Now, jump right in. There's no excuse for not using IAM. Start today!

Security and Identity

[313]

Getting ready
All you need to proceed is the CLI tools installed with a profile which can call the AWS
IAM API. If you don't have this, you can follow along with the recipe steps using the AWS
web console instead as the process is the same.

How to do it...
Create a new group by running this CLI command:1.

 aws iam create-group --group-name <group-name>

The output looks like this:2.

 {
 "Group": {
 "Path": "/",
 "GroupId": "AGPAIHM2XJ2ELQTNYBFQQ",
 "Arn": "arn:aws:iam::067180688831:group/PowerUsers",
 "GroupName": "PowerUsers"
 }
 }

The group doesn't have permissions to do anything yet, so you'll need to attach a3.
policy to it. You can do it with this command (which unfortunately doesn't
provide any feedback if it successfully runs):

 aws iam attach-group-policy \
 --group-name <group-name> \
 --policy-arn <policy-arn>

You can find the Amazon Resource Name (ARN) for the policy you'd like to4.
attach in the AWS IAM web console. You can also run the following CLI
command to get a list of policies:

 aws iam list-policies

In this example, we're dealing with PowerUsers so we want to attach the5.
following ARN, which maps to the AWS Managed Policy for power users:

 arn:aws:iam::aws:policy/PowerUserAccess

Security and Identity

[314]

Now we can go ahead and create a new user by running this CLI command:6.

 aws iam create-user --user-name <new-username>

You'll get a response that looks like this:7.

 {
 "User": {
 "UserName": "lucille.bluth",
 "Path": "/",
 "CreateDate": "2017-02-19T06:16:50.558Z",
 "UserId": "AIDAIU5P6ESCGYTVGACFE",
 "Arn": "arn:aws:iam::07180688831:user/lucille.bluth"
 }
 }

If you wish to give this user access to the web console, you'll need to create a8.
login profile for them. You can do it like so:

 aws iam create-login-profile --user-name <username> \
 --password <password> \
 --password-reset-required

Forcing a password reset here is probably good practice. The API should respond9.
to you like so:

 {
 "LoginProfile": {
 "UserName": "lucille.bluth",
 "CreateDate": "2017-02-19T06:29:06.244Z",
 "PasswordResetRequired": true
 }
 }

To give the API access to the user, they'll need a set of API keys. Generate them10.
with this command:

 aws iam create-access-key --user-name <username>

Security and Identity

[315]

The output will look something like this:11.

 {
 "AccessKey": {
 "UserName": "lucille.bluth",
 "Status": "Active",
 "CreateDate": "2017-02-19T06:59:45.273Z",
 "SecretAccessKey": "abcdefghijklmnopqrstuvwxyz",
 "AccessKeyId": "AAAAAAAAAAAAAAAAAAAA"
 }
 }

Access keys can only be retrieved once. There is no way to fetch them again after12.
they've been generated and shown to you. If you lose your access keys, you'll
have to regenerate a new set of keys.
This user still doesn't have any permissions to do anything; this is because they13.
don't yet belong to a group. Let's add them to the group we created in step 1:

 aws iam add-user-to-group \
 --group-name <group-name> \
 --user-name <username>

Note that unfortunately this command doesn't return any output either.
You can verify whether or not this worked by running this command:

 aws iam list-groups-for-user --user-name <username>

You should see something like this:14.

 {
 "Groups": [
 {
 "Path": "/",
 "CreateDate": "2017-02-19T07:24:46Z",
 "GroupId": "AGPAIHM2XJ2ELQTNYBFQQ",
 "Arn": "arn:aws:iam::067180688831:group/PowerUsers",
 "GroupName": "PowerUsers"
 }
]
 }

Security and Identity

[316]

There's more...
This pretty much covers the basics of how to create IAM groups and users and assign
policies to them. Here are some of the IAM tips and gotchas we've run into over the years:

Users can exist in more than one group. Use this to your advantage.
Groups, however, cannot exist within other groups.
Users can have more than one set of API keys. This is necessary when they need
to perform key rotation.
You can (and should) define a strong password policy for your IAM users.
The PowerUserAccess policy is good but does not allow IAM access. At first this
might not seem to be a problem; however, if you are bound by this policy you
will encounter issues when running CloudFormation stacks that create IAM roles
for EC2 instances, for example.
IAM is a global service, meaning that users and groups are global, not region-
specific. By default, a user can use AWS services in any region.
EC2 key pairs are region-specific and not specific to an IAM user. In other words,
IAM users don't have SSH keys associated with them.
Your IAM username and password (and access keys) won't provide you with
SSH or RDP access to running instances. Credentials for these services are
managed separately.
You can assign up to 10 policies to a group or user.
You should also consider enabling MFA on IAM user accounts for added
security. This is used primarily for accessing the web console but you can also
configure your policies so that MFA will be required for API calls too. You can
choose between hardware and software tokens. A good rule of thumb is to use
software tokens for IAM users and hardware tokens for root logins. MFA via
SMS is due to arrive soon and is currently in public preview.

See also
The Federating with your AWS account recipe
The Cross-account user roles recipe

Security and Identity

[317]

Creating instance roles
This recipe is reasonably short but it contains a really important concept to anyone who is
new to the AWS platform. Understanding and utilizing IAM roles for EC2 will significantly
reduce your exposure to lost credentials and probably help you sleep a little better at night
too. In a nutshell, instance roles help you get AWS credentials off your servers and out of
your code base(s).

Roles contain one or more policies. We're going to create a role that has some AWS
Managed Policies as well as an Inline Policy. As the name would suggest, an AWS Managed
Policy is a policy that is created and fully controlled by AWS. The Inline Policy is going to
be created by us and will be embedded in our role definition.

The AWS Managed Policies we'll use will allow read-only access to the S3 and EC2 APIs.
The Inline Policy we'll create will allow write access to CloudWatch logs. We'll talk through
why you would or wouldn't choose a Managed Policy later in this recipe.

How to do it...
Create a new CloudFormation template file and add the first Resource. This is1.
going to be our role that contains references to the managed policies, and also our
Inline Policy:

 AWSTemplateFormatVersion: '2010-09-09'
 Resources:
 ExampleRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Effect: Allow
 Principal:
 Service:
 - ec2.amazonaws.com
 Action:
 - sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess
 - arn:aws:iam::aws:policy/AmazonEC2ReadOnlyAccess
 Path: /
 Policies:

Security and Identity

[318]

 -
 PolicyName: WriteToCloudWatchLogs
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Effect: Allow
 Action:
 - logs:CreateLogGroup
 - logs:CreateLogStream
 - logs:PutLogEvents
 - logs:DescribeLogStreams
 Resource: "*"

We now need to create an InstanceProfile resource. A profile encapsulates a2.
single IAM role and, roughly speaking, that's all it's used for. A profile can
contain only a single IAM role, so it's not clear why AWS has built this extra layer
of abstraction; presumably they have plans to give profiles of other properties
aside from roles:

 ExampleInstanceProfile:
 Type: AWS::IAM::InstanceProfile
 Properties:
 Roles:
 - !Ref ExampleRole
 Path: /

For convenience, we'll add some Outputs that will provide the profile name and3.
ARN to us after the stack is created:

 Outputs:
 ExampleInstanceProfile:
 Value: !Ref ExampleInstanceProfile
 ExampleInstanceProfileArn:
 Value: !GetAtt ExampleInstanceProfile.Arn

You can now create your instance role CloudFormation web console or via the4.
CLI like this:

 aws cloudformation create-stack \
 --stack-name example-instance-profile \
 --template-body file://08-creating-instance-roles.yaml \
 --capabilities CAPABILITY_IAM

Security and Identity

[319]

This role can now be assigned to your EC2 instances. The Feeding log files in to CloudWatch
logs recipe in Chapter 5, Management Tools, shows how you can define a role and assign it to
an EC2 instance at launch using CloudFormation.

How it works...
How on earth does this solve the problem of hardcoded AWS API keys? Well, something
really interesting happens when you assign a role to an EC2 instance. The metadata for that
instance will return a set of short-lived API keys. You can retrieve these keys by sending an
HTTP request to the metadata URL (this is a service EC2 instances can use to fetch
information about themselves):

http://169.254.169.254/latest/meta-data/iam/security-credentials/<role
name>

The output of a curl request to this URL will look something like this:

 {
 "Code" : "Success",
 "LastUpdated" : "2017-02-17T11:14:23Z",
 "Type" : "AWS-HMAC",
 "AccessKeyId" : "AAAAAAAAAAAAAAAAAAAA",
 "SecretAccessKey" : "zz",
 "Token" : "token",
 "Expiration" : "2017-02-17T12:14:23Z"
 }

If you take the AccessKeyId and SecretAccessKey returned in the response, you can use
them to query the AWS API. The policies applied to the instance based on the role assigned
to it will determine exactly what API actions the instance is able to perform using these
keys.

The really fun part is that you don't have to worry too much about handling these keys at
all (although it's really useful to know how all this works under the hood). For example, the
AWS CLI tools will automatically fetch these keys for you prior to running any CLI
commands. The same goes for the AWS SDKs.

Security and Identity

[320]

Take a scenario where your developers are building an application that needs to fetch files
from S3. As long as they are using the AWS SDK to do this and the application is running
on an EC2 instance that has been assigned a role containing a policy that allows files to be
fetched from S3, then no credentials are required by the application whatsoever! The SDK
will take care of the queries to the metadata service for you.

The AWS SDKs are available for almost every widely used language, so there's no excuse
for keeping hardcoded AWS credentials in config files or source code.

You will see your instances roles listed in the IAM console under the Roles section:

Security and Identity

[321]

Clicking on the role will reveal further details, such as the policies that have been assigned
to it:

There's more...
IAM is a global service. This means that the roles and policies you create will be
available in every region.
You'll find all the available AWS Managed Policies in the AWS web console.
There's quite a few of them so don't be afraid to use the search bar.
There's a third kind of policy called a Customer Managed Policy. These are
policies which are managed by you and will appear in the AWS console amongst
the AWS Managed Policies.
As of February 2017, it is possible to attach an IAM role to an existing/running
EC2 instance. This previously wasn't the case and the role could only be assigned
at the time the instance launched.
AWS automatically and periodically rotates the credentials returned by the
metadata service.

Security and Identity

[322]

It's not always appropriate to use an AWS Managed Policy. For example, if a
server needs to write to CloudWatch logs, it may be tempting to assign it the
AWS Managed Policy that provides full access. If you do this, however, you'll
also be giving the server access to delete log groups and streams. This is almost
certainly undesirable. You'll want to inspect the policies before you apply them
and defer to an Inline or Customer Managed Policy where appropriate. The
principle of least privilege applies here.

See also
The Feeding log files in to CloudWatch logs recipe in Chapter 5, Management Tools

Cross-account user roles
Using multiple accounts to provision your resources (for example, development and
production environments) provides a form of blast radius protection—even in a worst-case
scenario, any issues or damages are limited to the account they occur in, not your entire
AWS presence.

Creating and assuming roles across accounts is the best way to manage access to multiple
accounts. Specific roles provide a clear and explicit declaration of permissions that can be
easily reviewed, and revoked if needed.

This recipe provides a way to scale your access across many accounts, without
compromising your security.

Getting ready
This recipe assumes you already have two AWS accounts created and ready to go.

In one account (the source account, referred to as Account A) you will need an IAM user.

Security and Identity

[323]

While you will need to use your account's root credentials to set up the
first role in an account, do not use them on a day-to-day basis. The root
account has permissions to do anything in your account, and should only
be used when necessary.

How to do it...
Start a new template with a version and description:1.

 AWSTemplateFormatVersion: "2010-09-09"
 Description: This template creates a role that can be assumed
 from another account.

The template will take one parameter—the source account that can assume the2.
role:

 Parameters:
 SourceAccountNumber:
 Type: String
 Description: The AWS account number to grant access to assume
 the role.
 AllowedPattern: "[0-9]+"
 MaxLength: "12"
 MinLength: "12"

The role itself will consist of the trust role and a sample policy:3.

This role has full access to the target account.

 Resources:
 CrossAccountRole:
 Type: "AWS::IAM::Role"
 Properties:
 Path: "/"
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Sid: ""
 Action: "sts:AssumeRole"
 Effect: Allow
 Principal:

Security and Identity

[324]

 AWS:
 !Sub "arn:aws:iam::${SourceAccountNumber}:root"
 Policies:
 - PolicyName: DoEverything
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Action:
 - "*"
 Effect: Allow
 Resource: "*"
 Sid: DoEverything

Finally, we create an output that will make it easy to retrieve the target role ARN:4.

 Outputs:
 RoleARN:
 Description: The Role ARN that can be assumed by the
 other account.
 Value: !GetAtt CrossAccountRole.Arn

Save the template with a known name, for example 08-target-account-5.
role.yaml.
Deploy the role to the target account (that is, Account B) by using the CLI tool:6.

 aws cloudformation create-stack \
 --stack-name CrossAccountRole \
 --template-body file://src/08-target-account-role.yaml \
 --parameters \
 ParameterKey=SourceAccountNumber, \
 ParameterValue=<your-source-account-number> \
 --capabilities CAPABILITY_IAM

Get (just) the target role ARN from the outputs of your CloudFormation stack:7.

 aws cloudformation describe-stacks \
 --stack-name CrossAccountRole \
 --query 'Stacks[0].Outputs[0].OutputValue' \
 --output text

In your source account (that is, Account A) confirm that you can assume the8.
target role by manually invoking the CLI tool:

 aws sts assume-role \
 --role-arn <your-target-role-arn> \
 --role-session-name CrossAccountRole

Security and Identity

[325]

How it works...
While cross-account roles are extremely useful for administering multiple AWS accounts,
they're not the most intuitive thing to configure. Here's a diagram that illustrates the
resources and their interactions:

The first few steps of this recipe are simply creating the Target IAM Role in a clear and
repeatable way using CloudFormation.

You must explicitly call out the AWS account number that will be allowed to assume this
role. If you want to allow multiple accounts to assume the role, simply add more statements
to the AssumeRolePolicyDocument property of the role.

The sample policy created in this template gives full access to the target account (because
the Action and Resource are both set to *). You should adjust this as appropriate for your
needs.

Defining an output value that returns the IAM role's ARN will make it easier to get the
generated ID later in the recipe.

We then launch the template in the target account. As this template creates IAM resources,
you must supply the --capabilities CAPABILITY_IAM argument. If you don't have any
existing IAM users that can launch it, use the AWS web console (after logging in with your
root credentials). This means you don't need to bother creating IAM users in the target
account.

Security and Identity

[326]

Once you have deployed the template, you will no longer need to log in to the account
manually—you can just assume the newly created role from the trusted (source) account.
Using an IAM role in the target account means that your day-to-day access does not require
multiple passwords, which takes work to manage and store securely. You only need to have
one password—the password of your source IAM user.

After the stack has finished creating (which shouldn't take long, as it's only creating one
resource), you can quickly extract the target role's ARN with a describe-stacks call,
combined with a specifically-crafted --query argument. The JMESPath query
Stacks[0].Outputs[0].OutputValue gets the OutputValue property of the first output
in the first stack returned, which we know will be the target role ARN because there is only
one output in the template.

Finally, the sample assume-role command will return the credentials for the target role
(that is, ACCESS_KEY_ID and SECRET_ACCESS_KEY). You can then use this in an API call,
via the CLI tool or one of the SDKs. Keep in mind that these tokens will be short-lived.

See the next section for a more convenient way to use the credentials with the CLI tool by
creating profiles.

There's more...
Just as there are multiple ways to use roles, there are multiple ways to utilize cross-account
roles.

AWS CLI profiles
One of the easiest ways to use a cross-account role is configuring it as a profile for the AWS
CLI tool to use. This means you can quickly and easily switch accounts just by changing the
profile you use when executing your commands.

To do this, you must define the target role in the CLI configuration file. With this
configuration, it is assumed that your default profile is in the source account (that is,
Account A).

Security and Identity

[327]

Add the following snippet to the ~/.aws/config file on Linux and Mac computers, and
C:\Users\[USERNAME]\.aws\config file on Windows:

[profile accountb]
role_arn = <your-target-account-role-arn>
source_profile = default

To use switch roles, all you need to do is pass the --profile argument along with your
command:

 aws --profile accountb ...

See also
The Creating users recipe.

Storing secrets
A common mistake new administrators make when getting started with Infrastructure-as-
Code is committing secrets (passwords, access keys, and so on) in their repositories. While
this makes their infrastructure repeatable, it also makes it much more likely their credentials
will be compromised. Once something is in version control, it's hard and annoying to
remove it (that's the point of version control!). Even if you do remove it, it's almost
impossible to know if it has already been viewed/copied by someone unintended.

In this recipe, we will introduce and use the open source tool, Unicreds.

Unicreds is a Golang port of the Python tool, Credstash:
https://github.com/fugue/credstash.
While the functionality is very similar, Unicreds has the benefit of being
cross-platform and dependency-free!

Since this pattern is completely backed by AWS services, it removes the need to manage
(and worry about) password vaults, shared passwords, and committing sensitive
information to SCM.

You might even use Unicreds to store non-secret information, because it provides a
convenient way to store and share settings without the need to run or maintain any servers!

https://github.com/fugue/credstash

Security and Identity

[328]

Getting ready
You must have Unicreds present on your target system.

As it is written in Golang, it is easily distributed as a standalone binary application—no
installer or dependencies are required.

Releases for all platforms are available at
https://github.com/Versent/unicreds/releases.

These commands assume your default profile has the permission to create KMS keys and
DynamoDB tables. You can override the profile used by passing the --profile argument
with all of the commands in the recipe. You must also have your AWS region setting
configured.

How to do it...
Create a KMS key, and take note of the Key ID returned:1.

 aws kms create-key --query 'KeyMetadata.KeyId' --output text

Create an alias for the key:2.

Unicreds uses the alias/credstash alias to make it compatible with
Credstash.

 aws kms create-alias --alias-name 'alias/credstash' \
 --target-key-id "<your-key-id>"

Set up the resources required by Unicreds:3.

 unicreds setup

Store a secret using the put command:4.

 unicreds put foo bar

https://github.com/Versent/unicreds/releases

Security and Identity

[329]

Get the secret using the get command:5.

 unicreds get foo

How it works...
Here is a high-level diagram that illustrates the components involved in theses Unicreds
commands:

We start this recipe by creating the key that will be used to encrypt the secrets in KMS. Note
that we never get to see this key—it only exists in KMS. All you can do is request that KMS
encrypts or decrypts data with it for you.

It is possible to import your own key in to KMS (so that you could decrypt the secrets
outside of AWS if you needed to), but this is not required for Unicreds to work. The
create-key command returns the GUID for the key, which will be used in the following
steps.

Security and Identity

[330]

Aliases make it much easier to deal with KMS keys. You can use them in most commands in
place of the full key ARN. More importantly, it makes it obvious which key you are dealing
with so that you can quickly, easily, and confidently assign access permissions.

The default alias for the key used with Unicreds is alias/credstash. While this might
seem a bit confusing at first, it means that Unicreds is backward-compatible with Credstash.
You can choose your own alias; you will simply need to override it when you give your
other commands (such as setup, put, and so on).

The setup command creates the required resources in your AWS account. This effectively
means creating a DynamoDB table to store the secrets in.

Once everything is set up, you can start storing secrets using Unicreds. In this example, the
secret is stored with the (highly original) key foo and the value bar.

At this stage, you can go to DynamoDB in the AWS console and see the stored value in the
credential-store table. You can also change the name of the DDB table used when you
run the credstash setup command, if you want to.

Once there's a secret stored, you can retrieve it with the get command. It's important to
remember that there's no need to do this from the same machine you stored it from. As long
as the AWS user/role has sufficient permission to use the KMS service and access the DDB
table, they will be able to retrieve the secret.

There's more...
Unicreds leverages the built-in functionality of AWS, so you get an enterprise-grade
solution without the overhead of needing to run your own servers. Here are some other
useful things you can do to make your secrets even more secure.

Key aliases
Creating multiple KMS keys—and referring to them with unique aliases—is a great way to
limit the access to put/get secrets to specific applications or teams.

Instead of using the default alias/credstash alias, you could give a team their own alias
and be confident that they aren't going to see or write to anyone else's secrets.

Security and Identity

[331]

Secret reader role
Due to the fine-grained nature of IAM permissions, you can easily segment the type of
different access roles get to your AWS resources.

With the following IAM policy, you can ensure that the user/role can only read secret
values (using a specific key and table), but they can never set or change them:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "kms:Decrypt"
],
 "Effect": "Allow",
 "Resource": "arn:aws:kms:us-east-1:<your-account-id>:
 key/<your-key-id>"
 },
 {
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Effect": "Allow",
 "Resource": "arn:aws:dynamodb:us-east-1:<your-account-id>:
 table/credential-store"
 }
]
}

Secret writer role
The flip side to the secret reader role is the secret writer.

Add this snippet to the relevant IAM policy section of a role to give it the ability to set secret
values, but not retrieve them:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "kms:GenerateDataKey"
],

Security and Identity

[332]

 "Effect": "Allow",
 "Resource": "arn:aws:kms:us-east-1:<your-account-id>:
 key/<your-key-id>"
 },
 {
 "Action": [
 "dynamodb:PutItem"
],
 "Effect": "Allow",
 "Resource": "arn:aws:dynamodb:us-east-1:<your-account-id>:
 table/credential-store"
 }
]
}

The put-file command
You can put entire files in to storage with Unicreds. Just use the put-file command:

unicreds put-file foo bar.txt

Versioning
While storing your secrets securely is a great start, it is still good practice to change/rotate
your passwords, keys, and other secrets regularly.

Unicreds has built-in support for versioning, which means you can update your secrets
while still keeping records of previous versions.

When you put to the same secret name multiple times, Unicreds will automatically create
new versions for the values. You can get a specific version of secret by providing a version
argument with a get or put command:

unicreds get foo 1

See also
The Creating users recipe

9
Estimating Costs

In this chapter, we will cover:

Calculating costs
Estimating CloudFormation template costs
Purchasing reserved instances
Estimating total cost of ownership

Introduction
One of the hardest things to get used to when starting with AWS is that you pay for almost
everything that you use. One of the biggest benefits of AWS is that you only pay for what
you use. This makes it hard to quickly answer the how much is it going to cost? question that
often arises when people first start using AWS; they don't know exactly what they currently
use!

In a traditional infrastructure or data center setup, many costs are paid during the initial
outlay or in annual contracts. As AWS has no upfront fees, and few long-term
commitments, so the usual thought process around costs is turned on its head.

There are a number of helpful tools to get a better estimate of your AWS usage costs. Don't
forget that every AWS service page has a pricing section. While some pricing models can be
a bit confusing at the start, it quickly makes sense.

Estimating Costs

[334]

Calculating costs
AWS Simple Monthly Calculator is a website application provided to help you estimate and
forecast your AWS costs. By listing the resources you expect to consume you can calculate
your pay-as-you-go costs, which is how AWS bills you—there's no upfront costs involved.

Getting ready
In order to use the AWS Simple Monthly Calculator effectively, you need to already know
the specific services and resources that you will use on a monthly basis.

You also need to know specifics about things such as monthly data transfer and the amount
of data you will need to store. In AWS, you get charged for data in and out of AWS (for
example, visitors to your website), but not between AWS services (for example, EC2
instances to RDS databases).

How to do it...
Go to the calculator website, http://calculator.s3.amazonaws.com/index.html:1.

http://calculator.s3.amazonaws.com/index.html

Estimating Costs

[335]

Select/deselect the free usage tier option as relevant for your account—if the2.
account is less than 12 months old, you are eligible for the free usage tier.

Estimating Costs

[336]

Make sure you have the correct region selected before adding resources, as they3.
can differ in price from region to region:

Add your resources by selecting the relevant service from the left-hand menu,4.
and filling in your details:

Estimating Costs

[337]

Continue to add resources as necessary:5.

Estimating Costs

[338]

Once you've added all your resources, view the estimated monthly bill on the tab:6.

Estimating Costs

[339]

After confirming the estimate's detail, click on the Save and Share button to add7.
some additional metadata about your report. All the fields are optional:

Estimating Costs

[340]

A specific, one-time URL will be generated for your report that you can then8.
share with others:

How it works...
The accuracy of the calculator is completely dependent on your ability to forecast your
requirements and usage—not an easy thing to do when you first start using AWS!

Unfortunately, not all AWS services are present in the calculator (a notable exception is
AWS Lambda). For those services, you will have to do your own calculations based on the
service-specific pricing pages.

The cost of services and resources can vary from region to region. In
general, the us-east-1 region is the cheapest, and also has the most
services (not all services are available in all regions), so use that if you
want to know the lowest-cost option. Other regions' prices vary due to
supply and demand, cost of operations, and undoubtedly many other
reasons that AWS doesn't go in to.

Estimating Costs

[341]

Some services (for example, DynamoDB, Lambda, and so on) have a free tier that applies
even if your account does not qualify for the standard free tier (that is, the account is more
than 12 months old). These services will have a note on their specific calculator page
detailing the inclusions:

Once completed, you can generate a specific URL for your estimation report that you can
share with anyone. There's no authentication to access this URL, so don't put any sensitive
information in your reports. The only protection is that the URL is unlikely to be guessed
(given it's just the calculator site with a GUID parameter).

See also
The Estimating CloudFormation template costs recipe

Estimating CloudFormation template costs
Most of the recipes in this book have been managed and launched using CloudFormation,
the AWS Infrastructure as Code service.

Estimating Costs

[342]

Getting ready
For this recipe, you will need an existing CloudFormation template. The template does not
need to be deployed as a stack;, just the file is required.

In this example, we will use the template from Chapter 4, Using AWS Compute, to securely
access private instances: 06-create-database-with-automatic-failover.yaml.

How to do it...
Run the command to generate the report:1.

 aws cloudformation estimate-template-cost \
 --template-body \
 file://06-create-database-with-automatic-failover.yaml \
 --parameters ParameterKey=VPCId,ParameterValue=test \
 ParameterKey=SubnetIds,ParameterValue=\"test,test\" \
 ParameterKey=DBUsername,ParameterValue=test \
 ParameterKey=DBPassword,ParameterValue=test \
 --query Url \
 --output text

Click or copy and paste the URL into a browser to see the report:2.

Estimating Costs

[343]

Click on Amazon RDS in the left-hand menu to see the individual service page3.
details:

Estimating Costs

[344]

Click on Estimate of your Monthly Bill to see a total summary of the template4.
resources:

How it works...
The estimate-template-cost command requires all the parameters of your template. As
you can see in the first step, the actual values aren't important because the template won't
actually be launched. You simply need to make sure the type of value you give matches the
required type for that parameter (for example, the SubnetIds value must be a list of values
in this template).

The region you specify is important! Some services (but not all) can cost
different amounts depending on the region they are in. Generally, the us-
east-1 region is the cheapest.

At the end of the command, we limit the output to just the report URL via the --query
argument.

Estimating Costs

[345]

You can share the URL generated with others, but you will not be able to
retrieve earlier reports unless you keep track of the URL yourself.

On the calculator website, the template's resources will be pre-populated, even if you can't
immediately see them. The report always defaults to the Amazon EC2 service page, so you
will have to go to the relevant service page via the left-hand menu (in this case, Amazon
RDS).

Finally, you can see a complete report of your template's monthly cost on the Estimate of
your Monthly Bill tab. If your template contains many different types of resources/services,
you will see them summarized here.

See also
The Create a database with automatic failover recipe in Chapter 6, Database Services
The Calculating costs recipe

Purchasing reserved instances
Reserved instances can be the cause of some confusion and are often misunderstood. Here
are a few pointers to get you going down the right path:

Reserved instances have no distinguishing technical features compared to regular
on-demand instances.
Reserved instances are not a specific type or class of instance.
Put simply, purchasing a reserved instance entitles you to a discounted hourly
rate on an on-demand instance that matches the properties of the reserved
instance.
The discounted hourly rate will be of a varying size depending on how much you
pay upfront. As a general rule, the more you pay upfront, the higher the
discount.

Estimating Costs

[346]

When you purchase a reserved instance, you're required to specify the following properties:

Platform (Linux/Windows)
Scope (Region or Availability Zone)
Instance Type (for example, m3.large)
Tenancy (shared or dedicated)
Offering Class (standard or convertible)
Term (1-12 months or 1-3 years)
Payment Option (no upfront, partial upfront, all upfront)

We'll explore the ins and outs a little more later in this section. For now, let's dive in and see
how to make a purchase.

Getting ready
You'll need an AWS account and some idea of which instance types you wish to reserve and
for how long. Refer to the reserved instance properties mentioned previously for the exact
information you'll need to proceed.

The Payment Option you choose will dramatically affect the price you pay when
purchasing the reservation:

No Upfront: This means you pay nothing now but you will be charged the
discounted hourly rate for the entire term whether or not you have an instance
that matches the reservation. Also note that choosing this option limits you to 1
year for standard reservations and 3 years for convertible reservations (we'll
discuss these later in this section).
Partial Upfront: These reservations mean that you pay a smaller upfront fee and
then you are charged a discounted hourly rate only for the instance hours you
use.
All Upfront: As the name suggests, you'll be required to pay the full cost of the
instance for the entire term. An effective 100% discount is applied to the hourly
rate of your matching instances for that term.

Once you know all the properties of the instance reservation, you can go ahead and make a
purchase.

Estimating Costs

[347]

How to do it...
Go to the EC2 web console, select Reserved Instances, then Purchase Reserved1.
Instances:

We now need to perform a search for the instance type you wish to purchase. In2.
this example, we're going to choose the following:

Platform: Linux/UNIX
Tenancy: Default
Offering Class: Standard
Instance Type: t2.micro
Term: 1 months-12 months
Payment Option: All Upfront

Estimating Costs

[348]

Obviously, choose the options that best match your workload. You almost3.
certainly want to choose Default as Tenancy here. Dedicated tenancy/instances
are run on hardware that will be occupied by only one customer (you) and are a
lot more expensive:

The console will return a price for the instance reservation. Note that because we4.
didn't select Only show offerings that reserve capacity, what we are seeing is a
single result, that is a reservation which applies to the region we're currently
viewing in the console. Think of this as a region level reservation:

Estimating Costs

[349]

Now try selecting Only show offerings that reserve capacity and notice that all5.
Availability Zones are showing for the current region. You can think of these as
AZ level reservations. Choosing one of these options obviously locks you in to a
specific Availability Zone; however, you also get a capacity reservation (discussed
next):

Choose the reservation that looks right for you, and then click Add to Cart and6.
then View Cart.

Estimating Costs

[350]

The next page shows a summary of your imminent purchase. Click Purchase to7.
proceed. Note that this is the point of no return. Reserved instances can't be
canceled. Choose wisely!

How it works...
After you've completed your purchase, your reservation will be marked as Payment
Pending and then soon after Active (there's a third possible status, which is Retired).

Once your reservation is Active, the discount will automatically apply to matching
instances. AWS refers to this hourly discount as a billing benefit.

Choosing a Convertible reservation class immediately rules out anything but a 3 year term.
In return, you get a little more flexibility than the Standard reservations because if you
decide the reservation no longer meets your needs, you can convert it to a reservation that is
of equal or higher value, paying the difference of course.

Estimating Costs

[351]

If you made a reservation for a specific Availability Zone, AWS also provides you with a
capacity reservation, which will give you some guarantees around the availability of
instances in that zone. This is something you might want to consider if your workload
needs to maintain a certain amount of capacity in the event of an entire Availability Zone
outage, for example. An event such as this tends to cause a rush of new instance requests in
the unaffected zones; however, customers without a capacity reservation may find their
new instance requests can't be fulfilled because of a lack of capacity (this is not unheard of),
causing them to miss out or forcing them to issue new instance requests for a different zone
and/or instance type while at the same time crossing their fingers.

Unlike the billing benefit (hourly discount), which is applied immediately
after purchase, a capacity reservation is used by the first instance you
launch in the zone matching the properties of your reservation.

There's more...
Services that launch instances on your behalf (auto scaling, Elastic Beanstalk, and
so on) are also eligible to have hourly discounts applied to them.
Standard reservations can be made for either 1 or 3 years. As mentioned before,
Convertible reservations are fixed at 3 years.
Under a consolidated billing model, reserved instances discounts are applied
across all your sub accounts. For example, if you purchase a reserved instance
intended for account A but there is no server matching its properties, the
reservation will automatically apply to matching instances in account B. This
only applies to the billing benefit and not the capacity benefit.
Reserved instances can be sold in the AWS marketplace. This is useful if the
reservation no longer suits your needs. Note that you will need a US bank
account for this.
If reserved instances don't seem to match your type of workload, you might
consider a scheduled instance instead.

Estimating Costs

[352]

Estimating total cost of ownership
The AWS TCO Calculator is designed to provide you with a ballpark view of how much it
will cost you to run equivalent infrastructure on AWS in comparison to your co-located or
on-premise data center.

The calculator has been audited by an independent third-party, but you should of course
check its output against your own calculations before you make any purchasing decisions.

Getting ready
In this example, we're going to describe a typical three tier Rails image processing
application running with a modest amount of hardware. You can use our example
configuration or follow along with your own hardware requirements.

How to do it...
Navigate to https://awstcocalculator.com/.1.
Choose your currency, location, AWS region, and workload type. In our case2.
we're going to choose the following:

Australian dollar
Colocation
Asia Pacific (Sydney)
General

https://awstcocalculator.com/

Estimating Costs

[353]

TCO Calculator—workload

Now we need to describe our server requirements. We're going to specify that3.
our app is running on physical servers with tiers that look like this:

App Name: nginx
Server Type: Non DB
of Processors/Server: 2
of Cores/Processor: 2
of Servers: 2
Memory (GB): 16

App Name: rails
Server Type: Non DB
of Processors/Server: 2
of Cores/Processor: 4
of Servers: 4
Memory (GB): 32

Estimating Costs

[354]

App Name: mysql
Server Type: DB
of Processors/Server: 2
of Cores/Processor: 8
of Servers: 2
Memory (GB): 64
DB Engine: MySQL

TCO Calculator—servers

Estimating Costs

[355]

Lastly, we need to input our storage requirements. For our example, the rails4.
application, we need the following:

Storage Type: Object
Raw Storage Capacity: 2TB
% Accessed Infrequently: 90

TCO Calculator—storage

Estimating Costs

[356]

Go ahead and click Calculate TCO.5.
The 3 year cost breakdown graphs provide a high-level view of your potential6.
cost savings. You can see that, in our example, AWS estimates we'll save 68% on
our infrastructure costs over the next 3 years. That's pretty impressive!

TCO Calculator—summary

Estimating Costs

[357]

Scroll further through the report to see cost breakdowns categorized by resource7.
type:

TCO Calculator—graphs

How it works...
The calculator will take your server requirements and map them to EC2 instances of an
appropriate size. Since we've been specific that we need an object store for our storage, it
will calculate our storage costs based on the price for S3 storage in our region.

Estimating Costs

[358]

There's more...
Let's take a look under the hood and see how we're able to save so much money on AWS:

The prices for our EC2 instances are based on a 3 year reserved instance price
with a partial upfront payment. Is this a fair comparison? Yes and no. You
would probably be locked in to a fixed hardware contract with your on-premise
or co-located solution, so it makes sense to apply similar contract terms to your
AWS pricing model. In reality, you'd probably want to think about purchasing
reserved instances after you've moved to AWS and performed some fine tuning
around which instance types to use. On the flip side, the AWS costs could be
reduced even further if your servers ran under All Upfront instance reservations.
The comparison of object storage systems may or may not be fair depending on
the feature set of your on-premise or co-located solution. For example, S3 has the
ability to apply an infrequently accessed storage class on stored objects, which
reduces their cost but also (theoretically) slightly reduces their availability.
You'd probably not have this feature in your on-premise or co-located storage.
The 3 year cost for storage in our on-premise/co-located facility is AU $69,660, of
which a whopping 97% of that is the monthly cost to operate a rack. This includes
rental of space, cooling, power, and so on.
While the cost calculator is taking a purely infrastructure view, it also does factor
in support costs. If you are new to AWS, you will probably be leaning on AWS
support a little bit to get up and running.
You'll also want to factor in some costs around training and potentially hiring
staff who are skilled in deploying and migrating systems to AWS. Your
developers are also going to start thinking differently about how to build and
deploy their applications. Make sure to factor this in too.
If you aren't totally happy with the on-premise or co-location estimates, you can
go ahead and change the figures used in the calculation. Scroll to the top of the
page and click Modify Assumptions to input your own hardware prices:

Estimating Costs

[359]

TCO Calculator—modify assumptions

See also
The Purchasing reserved instances recipe

Index

A
accounts
 deleting 49
 inviting 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,

59, 60
 managing 61, 62
 removing 61
Active Directory
 as service 307, 311
Amazon CloudFront 74
Amazon Machine Images (AMIs)
 about 21, 119
 deregistering 124
Amazon Resource Name (ARN) 48, 136, 313
Amazon Web Services (AWS)
 about 7
 Availability Zones (AZ) 8
 domain, delegating to 83
 Regions 8
AMI's marketplace page
 reference 106
App Account 263
application programming interface (API) 29
application server
 auto scaling 114, 116, 117, 118
archives 74
Auth Account 263
auto scaling
 about 114
 scaling policies 118
automatic failover
 database, creating with 189, 191, 192, 194
AWS account
 Active Directory configuration 265, 266, 267,

268, 269, 270
 App Account role configuration 284, 285, 286,

287, 288, 289, 290, 291
 auditing 138, 139, 140, 141
 Auth Account policy configuration 271
 Auth Account role configuration 273, 274, 275,

276, 277
 creating 7
 federating with 263, 293, 294, 295, 296, 297,

298, 299
 reference, for creating account 7
 simple AD configuration 278, 279, 280, 281,

282, 283
AWS Certificate Manager (ACM) 301
AWS CLI profiles 326, 327
AWS software development kits (SDKs) 36
AWS web console 9, 10

B
big bang deployment 240
bill shock 171
Billing dashboard 178
buckets 73
budget
 creating 171, 172, 174, 175, 176, 178
builders section, templates
 about 122
 AMI, building 123
 validating 123
business unit (BU) 61

C
calculator website
 reference 334
canary deployment
 about 240
 via DNS 240, 242
change sets, CloudFormation 27
CLI skeleton

[361]

 generating 36
 input 37
 output 37
CLI tool
 using 46
CloudFormation parameters 18, 19
CloudFormation resources 20
CloudFormation stacks
 circular dependencies 28
 credentials 29
 DSLs 28
 generators 28
 limits 27
 name collisions 27
 policies 29
 rollback 27
CloudFormation template costs
 estimating 341, 343, 344
CloudFormation templates
 about 10, 16, 17
 YAML example 17
 YAML, versus JSON 17
CloudFormation
 about 14
 change sets 27
 conditionals 24
 cross-stack references 25, 26
 custom resources 25
 dependencies concept 21
 functions 23
 layer cake 15, 16
 mappings section 21
 ordering concept 22
 outputs 20, 21
 permissions 24, 25
 resources, updating 26
 service roles 24, 25
 significance 15
CloudFront distributions
 configuring 85, 86, 87
CloudWatch (CW)
 about 145
 custom metrics, publishing in 158, 159, 160
 existing topics 157
 subscriptions 158

CloudWatch logs
 about 178
 log files, feeding into 179, 180, 184, 185, 186
cold storage option 74
command-line interface (CLI) tool
 about 29
 autocomplete 38
 configuration 30, 31
 installation 30
 pagination 38
 reference 29
 upgrading 30
 usage 32
compliance
 data, backing up for 96, 97
configuration, command-line interface (CLI) tool
 default profile 31
 environment variables 31, 32
 instance roles 32
 named profile 31
considerations, flow-logs
 log format 260
 omissions 261
 updates 261
consolidated billing 61
content delivery 74
Content Delivery Network (CDN) 74
Conway's Law 16
costs
 calculating 334, 335, 336, 337, 339, 340
CPUHighAlarm parameter 119
cross-account user roles 322, 323
cross-origin resource sharing (CORS) 83
cross-stack references, CloudFormation 25, 26
custom metrics
 publishing, in CloudWatch 158, 159, 160
customer master key (CMK) 141

D
data
 backing up, for compliance 96, 97
database engines 219
Database Migration Service (DMS) 204
database read-replica
 creating 197

[362]

database
 creating, with automatic failover 189, 191, 192,

194

 migrating 204, 205, 206, 207, 208, 209, 210,
211, 212, 213, 214, 215, 216, 217, 219

 restoring, from snapshot 202, 203
deletion policy 259
device naming
 reference 105
DevOps 13
dimension 160
Direct Connect 235
distributions 75
DNS records
 creating 80
domain
 delegating, to AWS 83
 hosting 243, 244
dynamic content 85
DynamoDB (DDB) 220
DynamoDB performance
 calculating 220, 221, 222, 223

E
e-mail alarms
 creating 145, 147, 148, 149, 150, 151, 152,

153, 155, 156
Elastic Block Store (EBS) 72
Elastic Cloud Compute (EC2) 100
Elastic File System (EFS) 73
Elastic IP (EIP) 238
Elastic Load Balancers (ELBs) 236, 301
Elastic Network Interfaces (ENIs) 259
ELB account IDs
 reference 131
ELB options
 HTTPS/SSL 135
 path-based routing 136
error document 78

F
functions, CloudFormation
 Join 23
 reference 24
 Sub 23, 24

G
Glacier 74

H
hosted zone
 creating 80

I
Identity and Access Management (IAM) 46, 312
index document 78
Infrastructure as Code (IaC)
 about 10
 consistency 11
 costs 12
 DevOps 13
 on AWS 14
 scale 12
 server configuration 14
 troubleshooting 11
 visibility 11
Infrastructure-as-a-Service (IaaS) 10
Inline Policy 312
instance metadata
 reference 160
instance roles
 creating 317, 319, 320, 321, 325
instance
 launching 101, 102
Internet gateway (IGW) 195, 237

J
JavaScript Object Notation (JSON)
 reference 34
JMESPath
 reference 36
jq
 about 39
 reference 39

K
key aliases
 for securing secrets 330
key pair
 creating 100, 101

[363]

L
Lambda function 25
latency-based routing 256
load balancer
 creating 130, 133
log files
 feeding, into CloudWatch logs 178, 180, 184,

185, 186
log groups 186
log streams 186

M
machine images
 creating 119, 120, 121
master account
 account, adding to OU 64
 account, removing from OU 64
 ID, obtaining of OU 64
 OU, creating 63
 OU, deleting 65
 rootID, obtaining for organization 63
 setting up 40, 42, 43, 44, 45
master
 read-replica, promoting to 200, 201
member account
 accessing 47, 48
 creating 46
member accounts
 root credentials 48
monitoring dashboards
 creating 162, 163, 165, 166, 167, 168, 169,

170

multi-AZ replication 220
multi-factor authentication (MFA) 46

N
NAT gateway
 creating 195, 196, 237, 238, 239
Network ACL (NACL) 231
network address translation (NAT) 195, 237
Network Attached Storage (NAS) 73
network logging 257, 259
network storage
 working with 90, 91, 93, 94

network troubleshooting 257
networking 225
nuances, for using DDB
 burst capacity 223
 eventually consistent reads 224
 metrics 224

O
objects 73
one-time database backup
 creating 201, 202
ongoing replication 219
organizational control policies (OCPs) 65
organizational units (OUs) 45

P
Packer
 about 119
 issues, debugging 124
 orphaned resources 124
 reference 120
permissions, CloudFormation 24, 25
private instances
 accessing, securely 105, 108, 109, 110, 111,

112, 113
put file command
 for securing secrets 332

R
read capacity units (RCU) 220
read-replicas 199, 200
 promoting, to master 200, 201
Relational Database Service (RDS) 204
reserved instances
 purchasing 345, 346, 348, 349, 350
Route 53 routing policies 247
routing policies, Route 53
 latency-based routing 256
 weighted routing 256
routing, based on location with failover
 about 247, 248, 250, 252
 normal operation (geolocation routing) 253
 region A failure 253
 region B failure 255

[364]

S
S3 buckets
 creating 77, 78
 website content, uploading to 82
secret reader role 331
secret writer role 331
secrets
 storing 327, 328, 329, 330
secure network
 building 226, 227, 228, 230, 233, 235
security 262
security groups
 creating 125, 127, 129
 differences, from traditional firewalls 130
service control policy
 about 48
 adding 66, 67, 68, 69, 70
 AWS account level 66
 OU level 66
 root level 66
service roles, CloudFormation 24, 25
Simple Active Directory (Simple AD) 307
Simple Notification Service (SNS) 145
Simple Storage Service (S3) 73
snapshot
 database, restoring from 202, 203
SSL certificates
 creating 301, 302, 303, 304, 305, 306
 limitations, for obtaining 306
stacks 14
static website
 hosting 75, 76
storage area network (SAN) 72
storage devices, AWS
 Elastic Block Store (EBS) 72
 Elastic File System (EFS) 73
 Glacier 74
 Simple Storage Service (S3) 73
storage
 about 71
 attaching 103, 104, 105

T
total cost of ownership
 estimating 352, 353, 355, 356, 357, 358
Trusted Advisor
 API access 145
 exclusion 145
 idle load balancers 145
 notifications 144
 recommendations with 142
 reserved instances 145
 S3 bucket permissions 145
 unassociated Elastic IPs 145

U
Unicerds
 about 327
 reference 327
usage, command-line interface (CLI) tool
 about 32
 commands 32
 JSON 34
 options 33
 output 33
 querying 36
 subcommands 33
 table format 35
 text output format 35
use-cases, for custom metrics of CloudWatch
 auto scaling 161
 backfilling 161
 cron command 160
users
 creating 312, 313, 314, 315

V
vaults 74
versioning
 for securing secrets 332
Virtual Private Gateway (VPN) 235
VPC endpoints 236
VPC flow-logs 236
VPC peering 236
VPC sizing 236

W
Web Application Firewall (WAF) 84
website

 caching 84, 88
weighted routing 256
widget types 171
write capacity units (WCU) 220

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: AWS Fundamentals
	Introduction
	Creating an account
	Regions and Availability Zones
	The AWS web console
	CloudFormation templates

	Infrastructure as Code
	Visibility
	Consistency
	Troubleshooting
	Scale
	Costs
	DevOps
	Server configuration
	IaC on AWS

	CloudFormation
	What is CloudFormation?
	Why is CloudFormation important?
	The layer cake
	CloudFormation templates
	YAML versus JSON
	A closer look at CloudFormation templates
	Parameters
	Resources
	Outputs
	Mappings

	Dependencies and ordering
	Functions
	Fn::Join
	Fn::Sub

	Conditionals
	Permissions and service roles
	Custom resources
	Cross-stack references
	Updating resources
	Change sets
	Other things to know
	Name collisions
	Rollback
	Limits
	Circular dependencies
	DSLs and generators
	Credentials
	Stack policies

	The command-line interface tool
	Installation
	Upgrade
	Configuration
	Default profile
	Named profiles
	Environment variables
	Instance roles

	Usage
	Commands
	Subcommands
	Options
	Output
	JSON
	Table
	Text
	Querying

	Generate CLI skeleton
	Input
	Output

	Pagination
	Autocomplete
	Related tools
	jq

	Chapter 2: Managing AWS Accounts
	Introduction
	Setting up a master account
	How to do it...
	How it works...
	There's more...
	Multi-factor authentication
	Using the CLI

	See also

	Creating a member account
	Getting ready
	How to do it...
	How it works...
	There's more...
	Accessing the member account
	Service control policies
	Root credentials
	Deleting accounts

	See also

	Inviting an account
	Getting ready
	How to do it...
	How it works...
	There's more...
	Removing accounts
	Consolidated billing

	See also

	Managing your accounts
	Getting ready
	How to do it...
	Getting the root ID for your organization
	Creating an OU
	Getting the ID of an OU
	Adding an account to an OU
	Removing an account from an OU
	Deleting an OU

	How it works...
	There's more...
	See also

	Adding a service control policy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 3: Storage and Content Delivery
	Introduction
	Storage
	Elastic Block Store
	Elastic File System
	Simple Storage Service
	Glacier
	Content delivery

	Hosting a static website
	How to do it...
	Creating S3 buckets and hosting content
	Creating a hosted zone
	Creating DNS records
	Uploading website content

	How it works...
	There's more...
	Delegating your domain to AWS
	Cross-origin resource sharing

	Caching a website
	Getting ready
	About dynamic content
	Configuring CloudFront distributions

	How to do it...

	Working with network storage
	Getting ready
	How to do it...
	How it works...
	There's more...

	Backing up data for compliance
	How to do it...
	How it works...

	Chapter 4: Using AWS Compute
	Introduction
	Creating a key pair
	Getting ready
	How to do it...
	How it works...

	Launching an instance
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Attaching storage
	Getting ready
	How to do it...
	How it works...
	See also

	Securely accessing private instances
	Getting ready
	How to do it...
	Configuration

	How it works...
	There's more...

	Auto scaling an application server
	Getting ready
	How to do it...
	How it works...
	Scaling policies
	Alarms

	Creating machine images
	Getting ready
	How to do it...
	How it works...
	Template
	Validate the template
	Build the AMI

	There's more...
	Debugging
	Orphaned resources
	Deregistering AMIs
	Other platforms

	Creating security groups
	Getting ready
	How to do it...
	There's more...
	Differences from traditional firewalls

	Creating a load balancer
	How to do it...
	How it works...
	There's more...
	HTTPS/SSL
	Path-based routing

	Chapter 5: Management Tools
	Introduction
	Auditing your AWS account
	How to do it...
	How it works...
	There's more...

	Recommendations with Trusted Advisor
	How to do it...
	How it works...
	There's more...

	Creating e-mail alarms
	How to do it...
	How it works...
	There's more...
	Existing topics
	Other subscriptions

	See also

	Publishing custom metrics in CloudWatch
	Getting ready
	How to do it...
	How it works...
	There's more...
	Cron
	Auto scaling
	Backfilling

	See also

	Creating monitoring dashboards
	Getting ready
	How to do it...
	There's more...
	Widget types

	See also

	Creating a budget
	Getting ready
	How to do it...
	How it works...

	Feeding log files into CloudWatch logs
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 6: Database Services
	Introduction
	Creating a database with automatic failover
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a NAT gateway
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a database read-replica
	Getting ready
	How to do it...
	How it works...
	There's more...

	Promoting a read-replica to master
	Getting ready
	How to do it...

	Creating a one-time database backup
	Getting ready
	How to do it...

	Restoring a database from a snapshot
	Getting ready
	How to do it...
	There's more...

	Migrating a database
	Getting ready
	How to do it...
	How it works...
	There's more...
	Database engines
	Ongoing replication
	Multi-AZ

	Calculating DyanmoDB performance
	Getting ready
	How to do it...
	How it works...
	There's more...
	Burst capacity
	Metrics
	Eventually consistent reads

	Chapter 7: Networking
	Introduction
	Building a secure network
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also...

	Creating a NAT gateway
	Getting ready
	How to do it...
	How it works...
	See also

	Canary deployment via DNS
	Getting ready
	How to do it...
	How it works...

	Hosting a domain
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also...

	Routing based on location with failover
	Getting ready
	How to do it...
	How it works...
	Normal operation (geolocation routing)
	Region A failure
	Region B failure

	There's more...
	See also...

	Network logging and troubleshooting
	Getting ready
	How to do it...
	How it works...
	There's more...
	Log format
	Updates
	Omissions

	See also

	Chapter 8: Security and Identity
	Introduction
	Federating with your AWS account
	Getting ready
	How to do it...
	Active Directory configuration
	Auth Account policy configuration
	Auth Account role configuration
	Simple AD configuration
	App Account role configuration

	How it works...
	There's more...
	See also

	Creating SSL certificates
	How to do it...
	How it works...
	There's more...
	EC2 instances
	Importing certificates
	CloudFormation

	Active Directory as a service
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating users
	Getting ready
	How to do it...
	There's more...
	See also

	Creating instance roles
	How to do it...
	How it works...
	There's more...
	See also

	Cross-account user roles
	Getting ready
	How to do it...
	How it works...
	There's more...
	AWS CLI profiles

	See also

	Storing secrets
	Getting ready
	How to do it...
	How it works...
	There's more...
	Key aliases
	Secret reader role
	Secret writer role
	The put-file command
	Versioning

	See also

	Chapter 9: Estimating Costs
	Introduction
	Calculating costs
	Getting ready
	How to do it...
	How it works...
	See also

	Estimating CloudFormation template costs
	Getting ready
	How to do it...
	How it works...
	See also

	Purchasing reserved instances
	Getting ready
	How to do it...
	How it works...
	There's more...

	Estimating total cost of ownership
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Index

